scispace - formally typeset
Search or ask a question

Showing papers on "Electrode array published in 2018"


Journal ArticleDOI
TL;DR: A stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation is reported.
Abstract: Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain...

121 citations


Journal ArticleDOI
TL;DR: This paper describes the fabrication of a soft micropillar electrode array made of electronically conductive hydrogel as a general tool for electrophysiological recording and shows improved signal amplitude and signal-to-noise ratio, compared with conventional hard iridium oxide micropillsar electrodes of the same diameter.
Abstract: Multielectrode arrays (MEAs) are essential tools in neural and cardiac research as they provide a means for noninvasive, multiplexed recording of extracellular field potentials with high temporal resolution. To date, the mechanical properties of the electrode material, e.g., its Young's modulus, have not been taken into consideration in most MEA designs leaving hard materials as the default choice due to their established fabrication processes. However, the cell-electrode interface is known to significantly affect some aspects of the cell's behavior. In this paper, we describe the fabrication of a soft 3D micropillar electrode array. Using this array, we proceed to successfully record action potentials from monolayer cell cultures. Specifically, our conductive hydrogel micropillar electrode showed improved signal amplitude and signal-to-noise ratio, compared with conventional hard iridium oxide micropillar electrodes of the same diameter. Taken together, our fabricated soft micropillar electrode array will provide a tissue-like Young's modulus and thus a relevant mechanical microenvironment to fundamental cardiac and neural studies.

70 citations


Journal ArticleDOI
TL;DR: The development and application of a chronically implanted platinum electrode array mounted on a nitinol endovascular stent for the localized stimulation of cortical tissue from within a blood vessel elicits responses from specific facial muscles and limbs in sheep.
Abstract: Direct electrical stimulation of the brain can alleviate symptoms associated with Parkinson's disease, depression, epilepsy and other neurological disorders. However, access to the brain requires invasive procedures, such as the removal of a portion of the skull or the drilling of a burr hole. Also, electrode implantation into tissue can cause inflammatory tissue responses and brain trauma, and lead to device failure. Here, we report the development and application of a chronically implanted platinum electrode array mounted on a nitinol endovascular stent for the localized stimulation of cortical tissue from within a blood vessel. Following percutaneous angiographic implantation of the device in sheep, we observed stimulation-induced responses of the facial muscles and limbs of the animals, similar to those evoked by electrodes implanted via invasive surgery. Proximity of the electrode to the motor cortex, yet not its orientation, was integral to achieving reliable responses from discrete neuronal populations. The minimally invasive endovascular surgical approach offered by the stent-mounted electrode array might enable safe and efficacious stimulation of focal regions in the brain.

57 citations


Journal ArticleDOI
TL;DR: The cuff electrode seems to be a promising electrode for the control of neuroprostheses in the near future, because it shows the best longevity and good spatial resolution and it has been used on human subjects in multiple studies.
Abstract: In this paper various types of electrodes for stimulation and recording activity of peripheral nerves for the control of neuroprosthetic limbs are reviewed. First, an overview of interface devices for (feedback-) controlled movement of a prosthetic device is given, after which the focus is on peripheral nervous system (PNS) electrodes. Important electrode properties, i.e., longevity and spatial resolution, are defined based upon the usability for neuroprostheses. The cuff electrode, longitudinal intrafascicular electrodes (LIFE), transverse intrafascicular multichannel electrode (TIME), Utah slanted electrode array (USEA), and the regenerative electrode are discussed and assessed on their longevity and spatial resolution. The cuff electrode seems to be a promising electrode for the control of neuroprostheses in the near future, because it shows the best longevity and good spatial resolution and it has been used on human subjects in multiple studies. The other electrodes may be promising in the future, but further research on their longevity and spatial resolution is needed. A more quantitatively uniform study protocol used for all electrodes would allow for a proper comparison of recording and stimulation performance. For example, the discussed electrodes could be compared in a large in vivo study, using one uniform comparison protocol.

52 citations


Journal ArticleDOI
25 Jul 2018-Sensors
TL;DR: A user-friendly electronic sleeve (e-sleeve) with integrated electrodes in an array for wearable healthcare that uses dry electrodes to facilitate ease of use and the electrode array can survive bending a sufficient number of times to ensure an acceptable usage lifetime.
Abstract: This paper presents research into a user-friendly electronic sleeve (e-sleeve) with integrated electrodes in an array for wearable healthcare. The electrode array was directly printed onto an everyday clothing fabric using screen printing. The fabric properties and designed structures of the e-sleeve were assessed and refined through interaction with end users. Different electrode array layouts were fabricated to optimize the user experience in terms of comfort, effectivity and ease of use. The e-sleeve uses dry electrodes to facilitate ease of use and the electrode array can survive bending a sufficient number of times to ensure an acceptable usage lifetime. Different cleaning methods (washing and wiping) have been identified to enable reuse of the e-sleeve after contamination during use. The application of the e-sleeve has been demonstrated via muscle stimulation on the upper limb to achieve functional tasks (e.g., hand opening, pointing) for eight stroke survivors.

41 citations


Journal ArticleDOI
TL;DR: Intracochlear ECochG may provide information about cochlear implant (CI) electrode location and hearing preservation.
Abstract: Hypothesis Electrocochleography (ECochG) patterns observed during cochlear implant (CI) electrode insertion may provide information about scalar location of the electrode array. Background Conventional CI surgery is performed without actively monitoring auditory function and potential damage to intracochlear structures. The central hypothesis of this study was that ECochG obtained directly through the CI may be used to estimate intracochlear electrode position and, ultimately, residual hearing preservation. Methods Intracochlear ECochG was performed on 32 patients across 3 different implant centers. During electrode insertion, a 50-ms tone burst stimulus (500 Hz) was delivered at 110 dB SPL. The ECochG response was monitored from the apical-most electrode. The amplitude and phase changes of the first harmonic were imported into an algorithm in an attempt to predict the intracochlear electrode location (scala tympani [ST], translocation from ST to scala vestibuli [SV], or interaction with basilar membrane). Anatomic electrode position was verified using postoperative computed tomography (CT) with image processing. Results CT analysis confirmed 25 electrodes with ST position and 7 electrode arrays translocating from ST into SV. The ECochG algorithm correctly estimated electrode position in 26 (82%) of 32 subjects while 6 (18%) electrodes were wrongly identified as translocated (sensitivity = 100%, specificity = 77%, positive predictive value = 54%, and a negative predictive value = 100%). Greater hearing loss was observed postoperatively in participants with translocated electrode arrays (36 ± 15 dB) when compared with isolated ST insertions (28 ± 20 dB HL). This result, however, was not significant (p = 0.789). Conclusion Intracochlear ECochG may provide information about CI electrode location and hearing preservation.

40 citations


Journal ArticleDOI
TL;DR: Proof of concept measurements of electrical impedance imaging and electrophysiology recording of cardiac cells and brain slices are demonstrated and optical and impedance images showed a strong correlation.
Abstract: A monolithic multi-functional CMOS microelectrode array system was developed that enables label-free electrochemical impedance spectroscopy of cells in vitro at high spatiotemporal resolution. The electrode array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. A total of 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen subset of electrodes in the array. A sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, was applied to the reference electrode. The sensing currents through the selected recording electrodes were amplified, demodulated, filtered, and digitized to obtain the magnitude and phase information of the respective impedances. The circuitry consumes only 412 μW at 3.3 V supply voltage and occupies only 0.1 mm2, for each channel. The system also included 2048 extracellular action-potential recording channels on the same chip. Proof of concept measurements of electrical impedance imaging and electrophysiology recording of cardiac cells and brain slices are demonstrated in this paper. Optical and impedance images showed a strong correlation.

35 citations


Journal ArticleDOI
TL;DR: The 44-channel suprachoroidal electrode array has an acceptable passive safety profile and is expected to improve in human studies, as the complications seen are specific to limitations (anatomic differences) with the feline model.
Abstract: Purpose: Following successful clinical outcomes of the prototype suprachoroidal retinal prosthesis, Bionic Vision Australia has developed an upgraded 44-channel suprachoroidal retinal prosthesis to provide a wider field of view and more phosphenes. The aim was to evaluate the preclinical passive safety characteristics of the upgraded electrode array. Methods: Ten normal-sighted felines were unilaterally implanted with an array containing platinum electrodes (44 stimulating and 2 returns) on a silicone carrier near the area centralis. Clinical assessments (color fundus photos, optical coherence tomography, full-field electroretinography, intraocular pressure) were performed under anesthesia prior to surgery, and longitudinally for up to 20 weeks. Histopathology grading of fibrosis and inflammation was performed in two animals at 13 to 15 weeks. Results: Eight animals showed safe electrode array insertion (good retinal health) and good conformability of the array to the retinal curvature. Eight animals demonstrated good mechanical stability of the array with only minor (<2 disc diameters) lateral movement. Four cases of surgical or stability complications occurred due to (1) bulged choroid during surgery, (2) hemorrhage from a systemic bleeding disorder, (3) infection, and (4) partial erosion of thin posterior sclera. There was no change in retinal structure or function (other than that seen at surgery) at endpoint. Histopathology showed a mild foreign body response. Electrodes were intact on electrode array removal. Conclusions: The 44-channel suprachoroidal electrode array has an acceptable passive safety profile to proceed to clinical trial. The safety profile is expected to improve in human studies, as the complications seen are specific to limitations (anatomic differences) with the feline model.

31 citations


Journal ArticleDOI
TL;DR: Simulations show depth accuracy of EIT extends to superficial layers of the hippocampus, which indicates that EIT imaging with epicortical electrodes is limited to activity occurring 2.5 mm below the surface of the cortex.

29 citations


Journal ArticleDOI
TL;DR: Patient customized cochlear implant insertion techniques achieved better positioning of electrode arrays in this study and have potential for improving electrode positioning in patients.
Abstract: HYPOTHESIS Using patient-customized cochlear measurements obtained from preoperative computed tomography (CT) scans to guide insertion of cochlear implant (CI) electrode arrays will lead to more optimal intracochlear positioning. BACKGROUND Cochlear duct length is highly variable ranging from 25.26 to 35.46 mm, yet CI electrode arrays are treated as one size fits most. We sought to investigate the impact of patient-customized insertion plans on final location of electrode arrays. METHODS Twenty cadaveric temporal bone specimens were CT scanned and randomly divided into groups A and B. Group A specimens had an optimal customized insertion plan generated including entry site (e.g., round window versus extended round window), entry vector based on anatomical landmarks (e.g., hug posterior aspect of facial recess and angle 1 mm inferior to stapes), depth to begin advancing off stylet, and final insertion depth. Suboptimal plans were chosen for group B by selecting an approach that was normal yet predicted to result in poor final electrode location. One surgeon, blinded as to group, carried out the CI insertions following which the electrode array was fixed using superglue and the specimen CT scanned to allow assessment of final electrode location. RESULTS Average perimodiolar distances for groups A and B were 0.51 and 0.60 mm, respectively. For group A, full scala tympani insertion was achieved in all specimens while in group B, 4 of 10 specimens had scalar translocation. CONCLUSION Patient customized cochlear implant insertion techniques achieved better positioning of electrode arrays in this study and have potential for improving electrode positioning in patients.

29 citations


Journal ArticleDOI
TL;DR: The application of CH materials was explored, using both a commercially available platinum iridium cuff electrode array and a novel low-cost stainless steel electrode array, and the CH was able to significantly increase the electrochemical performance of both array types.
Abstract: Nerve block waveforms require the passage of large amounts of electrical energy at the neural interface for extended periods of time. It is desirable that such waveforms be applied chronically, consistent with the treatment of protracted immune conditions, however current metal electrode technologies are limited in their capacity to safely deliver ongoing stable blocking waveforms. Conductive hydrogel (CH) electrode coatings have been shown to improve the performance of conventional bionic devices, which use considerably lower amounts of energy than conventional metal electrodes to replace or augment sensory neuron function. In this study the application of CH materials was explored, using both a commercially available platinum iridium (PtIr) cuff electrode array and a novel low-cost stainless steel (SS) electrode array. The CH was able to significantly increase the electrochemical performance of both array types. The SS electrode coated with the CH was shown to be stable under continuous delivery of 2 mA square pulse waveforms at 40,000 Hz for 42 days. CH coatings have been shown as a beneficial electrode material compatible with long-term delivery of high current, high energy waveforms.

Journal ArticleDOI
TL;DR: Two heights by two different planes are established to achieve a three-dimensional understanding of the cochlea and it is concluded that cochlear size, especially the height, is influencing the final position of the electrode array.
Abstract: Preoperative information about cochlear morphology and size increasingly seems to be a defining factor of electrode choice in cochlear implant surgery. Different types of electrodes differ in length and diameter to accommodate individual cochlear anatomy. Smaller cochlear size results in increased insertion depth with a higher risk to dislocate and causes cochlear trauma with reduced postoperative outcome. The objective of the current study is to describe the three-dimensional size of the cochlea, to compare interindividual differences, to determine the relationship between cochlear size and insertion angle, and to define risk factors for dislocation during insertion. Four hundred and three patients implanted between 2003 and 2010 inserted via cochleostomy with a perimodiolar electrode array (Cochlear™ Contour Advance® electrode array) have been compared. CBCT (Cone beam computed tomography) was used to determine electrode array position (scala tympani versus scala vestibuli insertion, intracochlear dislocation, and insertion angle) and cochlear size (diameters and height). The trajectory of the electrode array and the lateral wall have been measured, and the position of the electrode array has been estimated. The mean value of the largest diameter was 9.95 mm and that of the perpendicular distance was 6.54 mm. There was a statistically significant correlation between those values. Mean height was 3.85 mm. The intracochlear relation of the electrode array and the modiolus showed a statistically significant relationship with the cochlear expanse. The electrode array was more likely to dislocate in cochleae with a smaller diameter and a lower height. Cochleae with insertions into scala vestibuli exhibited a smaller height compared to scala tympani insertions with statistical significance. Cochlear size and shape is variable, and the measured data of this study confirm the finding of other researchers. This study established two heights by two different planes to achieve a three-dimensional understanding of the cochlea. The electrode array was more likely to dislocate in cochleae with smaller diameter and smaller height. It can be assumed that the height established in this study seems to be a new preoperative parameter to underline the risk of scalar dislocation and not favored scala vestibuli insertion if using a cochleostomy approach. In conclusion, cochlear size, especially the height, is influencing the final position of the electrode array. Using preoperative scans of the cochlear diameters and cochlear height, a next step to custom-sized arrays is available.

Journal ArticleDOI
TL;DR: Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.
Abstract: Objective: The dorsal root ganglia (DRG) are promising nerve structures for sensory neural interfaces because they provide centralized access to primary afferent cell bodies and spinal reflex circuitry. In order to harness this potential, new electrode technologies are needed which take advantage of the unique properties of DRG, specifically the high density of neural cell bodies at the dorsal surface. Here we report initial ligin vivol/ig results from the development of a flexible non-penetrating polyimide electrode array interfacing with the surface of ganglia. Approach: Multiple layouts of a 64-channel iridium electrode (420 µmlsupg2l/supg) array were tested, with pitch as small as 25 µm. The buccal ganglia of invertebrate sea slug ligAplysia californical/ig were used to develop handling and recording techniques with ganglionic surface electrode arrays (GSEAs). We also demonstrated the GSEA's capability to record single- and multi-unit activity from feline lumbosacral DRG related to a variety of sensory inputs, including cutaneous brushing, joint flexion, and bladder pressure. Main results: We recorded action potentials from a variety of ligAplysial/ig neurons activated by nerve stimulation, and units were observed firing simultaneously on closely spaced electrode sites. We also recorded single- and multi-unit activity associated with sensory inputs from feline DRG. We utilized spatial oversampling of action potentials on closely-spaced electrode sites to estimate the location of neural sources at between 25 µm and 107 µm below the DRG surface. We also used the high spatial sampling to demonstrate a possible spatial sensory map of one feline's DRG. We obtained activation of sensory fibers with low-amplitude stimulation through individual or groups of GSEA electrode sites. Significance: Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.

Journal ArticleDOI
TL;DR: The concept of scanning bipolar electrochemical microscopy allows precise positioning of a wireless scanning bipolar electrode to convert spatially heterogeneous concentrations of the analyte of interest into an electrochemiluminescence map of the sample reactivity.
Abstract: Electrochemical techniques offer high temporal resolution for studying the dynamics of electroactive species at samples of interest. To monitor fastest concentration changes, a micro- or nanoelectrode is accurately positioned in the vicinity of a sample surface. Using a microelectrode array, it is even possible to investigate several sites simultaneously and to obtain an instantaneous image of local dynamics. However, the spatial resolution is limited by the minimal electrode size required in order to contact the electrodes. To provide a remedy, we introduce the concept of scanning bipolar electrochemical microscopy and the corresponding experimental system. This technique allows precise positioning of a wireless scanning bipolar electrode to convert spatially heterogeneous concentrations of the analyte of interest into an electrochemiluminescence map of the sample reactivity. After elucidating the working principle by recording bipolar line and array scans, a bipolar electrode array is positioned at the ...

Journal ArticleDOI
06 Aug 2018-ACS Nano
TL;DR: A high-performance redox-cycling-based electrochemical diode is developed by coating an asymmetric ion-exchange membrane, Nafion, on the top surface of a nanopore electrode array (Nafion@NEA), in which each pore in the array exhibits one or more annular electrodes.
Abstract: Inspired by the functioning of cellular ion channels, pore-based structures with nanoscale openings have been fabricated and integrated into ionic circuits, for example, ionic diodes and transistors, for signal processing and detection. In these systems, the nonlinear current responses arise either because asymmetric nanopore geometries break the symmetry of the ion distribution, creating unequal surface charge across the nanopore, or by coupling unidirectional electron transfer within a nanopore electrode. Here we develop a high-performance redox-cycling-based electrochemical diode by coating an asymmetric ion-exchange membrane, that is, Nafion, on the top surface of a nanopore electrode array (Nafion@NEA), in which each pore in the array exhibits one or more annular electrodes. Nafion@NEAs exhibit highly sensitive and charge-selective electroanalytical measurements due to efficient redox-cycling reaction, the permselectivity of Nafion, and the strong confinement of redox species in the nanopore array. In addition, the top electrode of dual-electrode Nafion@NEAs can serve as a voltage-controlled switch to gate ion transport within the nanopore. Thus Nafion@NEAs can be operated as a diode by switching voltages applied to the top and bottom electrodes of the NEA, leading to a large rectification ratio, fast response times, and simplified circuitry without the need for external electrodes. By taking advantage of closely spaced and individually addressable electrodes, the redox-cycling electrochemical diode has the potential for application to large-scale production and electrochemically controlled circuit operations, which go well beyond conventional electronic diodes or transistors.

Journal ArticleDOI
TL;DR: An image-guided cochlear implant programming (IGCIP) system based on a significant correlation between hearing outcomes and the intracochlear locations of the electrodes and can localize closely spaced CI arrays with an accuracy close to what is achievable by an expert on clinical CTs is developed.
Abstract: Purpose Cochlear implants (CIs) are neural prosthetic devices that provide a sense of sound to people who experience profound hearing loss. Recent research has indicated that there is a significant correlation between hearing outcomes and the intracochlear locations of the electrodes. We have developed an image-guided cochlear implant programming (IGCIP) system based on this correlation to assist audiologists with programming CI devices. One crucial step in our IGCIP system is the localization of CI electrodes in postimplantation CTs. Existing methods for this step are either not fully automated or not robust. When the CI electrodes are closely spaced, it is more difficult to identify individual electrodes because there is no intensity contrast between them in a clinical CT. The goal of this work is to automatically segment the closely spaced CI electrode arrays in postimplantation clinical CTs. Methods The proposed method involves firstly identifying a bounding box that contains the cochlea by using a reference CT. Then, the intensity image and the vesselness response of the VOI are used to segment the regions of interest (ROIs) that may contain the electrode arrays. For each ROI, we apply a voxel thinning method to generate the medial axis line. We exhaustively search through all the possible connections of medial axis lines. For each possible connection, we define CI array centerline candidates by selecting two points on the connected medial axis lines as the array endpoints. For each CI array centerline candidate, we use a cost function to evaluate its quality, and the one with the lowest cost is selected as the array centerline. Then, we fit an a priori known geometric model of the array to the centerline to localize the individual electrodes. The method was trained on 28 clinical CTs of CI recipients implanted with three models of closely spaced CI arrays. The localization results are compared with the ground truth localization results manually generated by an expert. Results A validation study was conducted on 129 clinical CTs of CI recipients implanted with three models of closely spaced arrays. Ninety-eight percent of the localization results generated by the proposed method had maximum localization errors lower than one voxel diagonal of the CTs. The mean localization error was 0.13 mm, which was close to the rater's consistency error (0.11 mm). The method also outperformed the existing automatic electrode localization methods in our validation study. Conclusion Our validation study shows that our method can localize closely spaced CI arrays with an accuracy close to what is achievable by an expert on clinical CTs. This represents a crucial step toward automating IGCIP and translating it from the laboratory to the clinical workflow.

Journal ArticleDOI
TL;DR: Numerical simulations develop numerical simulations that demonstrate the potential for clinically relevant ablations with H-FIRE delivered via a single insertion technique comprised of an expandable array and a distally placed grounding pad and indicate that in vivo investigation of asingle insertion array and grounding pad are warranted.

Journal ArticleDOI
TL;DR: The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing thenumber of physical electrodes.
Abstract: OBJECTIVE: Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that 'virtual' electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. APPROACH: Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to 'steer' current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. MAIN RESULTS: Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p > 0.05; neural spread: one-way ANOVA on Ranks, p > 0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. SIGNIFICANCE: The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number of physical electrodes. Being able to reproduce spatial characteristics of responses to individual physical electrodes suggests that this technique could also be used to compensate for faulty electrodes.

Journal ArticleDOI
TL;DR: The present study shows that sampling from a larger number of posterior scalp electrodes is relevant to optimize visual function assessment and could be achieved efficiently in the time-constrained clinical setting.
Abstract: Purpose Sweep visual evoked potentials (sVEPs) provide an implicit, objective, and sensitive evaluation of low-level visual functions such as visual acuity and contrast sensitivity. For practical and traditional reasons, sVEPs in ophthalmologic examinations have usually been recorded over a single or a limited number of electrodes over the medial occipital region. Here we examined whether a higher density of recording electrodes improves the estimation of individual low-level visual thresholds with sVEPS, and to which extent such testing could be streamlined for clinical application. Methods To this end, we tested contrast sensitivity and visual acuity in 26 healthy adult volunteers with a 68-electrode electroencephalogram (EEG) system. Results While the most sensitive electrophysiologic response was found at the traditional medial occipital electrode Oz in a small majority of individuals, it was found at neighboring electrodes for the remaining participants. At the group level, lower spatial frequencies were also associated with right lateralized responses. More generally, visual function was evaluated more sensitively based on EEG recorded at the most sensitive electrode defined individually for each participant. Our data suggest that recording over seven posterior electrodes while limiting the testing session to less than 15 minutes ensures a sensitive and consistent estimation of acuity and contrast sensitivity threshold estimates in every individual. Conclusions The present study shows that sampling from a larger number of posterior scalp electrodes is relevant to optimize visual function assessment and could be achieved efficiently in the time-constrained clinical setting.

Journal ArticleDOI
01 Mar 2018-PLOS ONE
TL;DR: This model shows that simultaneous stimulation with multiple electrodes aligned with the nerve fiber layer can be used to achieve selective activation of axon initial segments rather than passing fibers, and can be achieved while reducing required stimulus charge density and with only modest increases in the spread of activation in the ganglion cell layer.
Abstract: A BSTRACT Objective: . Currently, a challenge in electrical stimulation of the retina is to excite only the cells lying directly under the electrode in the ganglion cell layer, while avoiding excitation of the axons that pass over the surface of the retina in the nerve fiber layer. Since these passing fibers may originate from distant regions of the ganglion cell layer. Stimulation of both target retinal ganglion cells and overlying axons results in irregular visual percepts, significantly limiting perceptual efficacy. This research explores how differences in fiber orientation between the nerve fiber layer and ganglion cell layer leads to differences in the activation of the axon initial segment and axons of passage. Approach . Axons of passage of retinal ganglion cells in the nerve fiber layer are characterized by a narrow distribution of fiber orientations, causing highly anisotropic spread of applied current. In contrast, proximal axons in the ganglion cell layer have a wider distribution of orientations. A four-layer computational model of epiretinal extracellular stimulation that captures the effect of neurite orientation in anisotropic tissue has been developed using a modified version of the standard volume conductor model, known as the cellular composite model. Simulations are conducted to investigate the interaction of neural tissue orientation, stimulating electrode configuration, and stimulation pulse duration and amplitude. Main results . The dependence of fiber activation on the anisotropic nature of the nerve fiber layer is first established. Via a comprehensive search of key parameters, our model shows that the simultaneous stimulation with multiple electrodes aligned with the nerve fiber layer can be used to achieve selective activation of axon initial segments rather than passing fibers. This result can be achieved with only a slight increase in total stimulus current and modest increases in the spread of activation in the ganglion cell layer, and is shown to extend to the general case of arbitrary electrode array positioning and arbitrary target neural volume. Significance . These results elucidate a strategy for more targeted stimulation of retinal ganglion cells with experimentally-relevant multi-electrode geometries and readily achievable stimulation requirements.

Journal ArticleDOI
TL;DR: A neural recording system capable of simultaneous and synchronous acquisitions from a new generation of high-resolution CMOS probes as well as from a custom-designed CMOS-based headstage that demonstrates the recording of neural spiking activity for both CMOS devices and the functionality of the system.
Abstract: Electrophysiological signals in the brain are distributed over broad spatial and temporal scales. Monitoring these signals at multiple scales is fundamental in order to decipher how brain circuits operate and might dysfunction in disease. A possible strategy to enlarge the experimentally accessible spatial and temporal scales consists in combining the use of multiple probes with different resolutions and sensing areas. Here, we propose a neural recording system capable of simultaneous and synchronous acquisitions from a new generation of high-resolution CMOS probes (512 microelectrodes, 25 kHz/electrode whole-array sampling frequency) as well as from a custom-designed CMOS-based headstage. While CMOS probes can provide recordings from a large number of closely spaced electrodes on single-shaft devices, the CMOS-based headstage can be used to interface the wide range of available intra- or epi-cortical passive electrode array devices. The current platform was designed to simultaneously manage high-resolution recordings from up to four differently located CMOS probes and from a single 36-channels low-resolution passive electrode array device. The design, implementation, and performances for both ICs and for the FPGA-based interface are presented. Experiments on retina and neuronal culture preparations demonstrate the recording of neural spiking activity for both CMOS devices and the functionality of the system.

Journal ArticleDOI
TL;DR: In this paper, a closed bipolar electrode (cBPE) array was used for electrochemiluminescence (ECL) detection using a self-induced redox cycle.
Abstract: In this study, we developed a new chemical imaging platform that uses a closed bipolar electrode (cBPE) array for electrochemiluminescence (ECL) detection. The cBPE array was successfully applied to use in the chemical imaging of molecular distributions by injection and a self-induced redox cycling. The results show the possibility of high-resolution chemical imaging using a cBPE array.

Journal ArticleDOI
22 Jan 2018
TL;DR: The optimal configuration (size and location) of a spherical-permanent-magnet MDS needed to accomplish guided insertions with a 100 mT field strength required at the cochlea is determined and the magnetic forces generated are two orders of magnitude below the threshold needed to puncture the basilar membrane.
Abstract: Magnetic guidance of cochlear-implant electrode arrays during insertion has been demonstrated in vitro to reduce insertion forces, which is believed to be correlated to a reduction in trauma. In those prior studies, the magnetic dipole-field source (MDS) was configured to travel on a path that would be coincident with the cochlea’s modiolar axis, which was an unnecessary constraint that was useful to demonstrate feasibility. In this paper, we determine the optimal configuration (size and location) of a spherical-permanent-magnet MDS needed to accomplish guided insertions with a 100mT field strength required at the cochlea, and we provide a methodology to perform such an optimization more generally. Based on computed-tomography scans of 30 human subjects, the MDS should be lateral-to and slightly anterior-to the cochlea with an approximate radius (mean and standard deviation across subjects) of 64mm and 4.5mm, respectively. We compare these results to the modiolar configuration and find that the volume of ...

Journal ArticleDOI
TL;DR: Steerable electrode arrays have the potential to minimize intracochlear trauma by reducing the severity of contact between the electrode-array tip and the cochlear wall, but these arrays typically have increased stiffness associated with the steering mechanism.
Abstract: Hypothesis Insertion forces can be reduced by magnetically guiding the tip of lateral-wall cochlear-implant electrode arrays during insertion via both cochleostomy and the round window. Background Steerable electrode arrays have the potential to minimize intracochlear trauma by reducing the severity of contact between the electrode-array tip and the cochlear wall. However, steerable electrode arrays typically have increased stiffness associated with the steering mechanism. In addition, steerable electrode arrays are typically designed to curve in the direction of the basal turn, which is not ideal for round-window insertions, as the cochlear hook's curvature is in the opposite direction. Lateral-wall electrode arrays can be modified to include magnets at their tips, augmenting their superior flexibility with a steering mechanism. By applying magnetic torque to the tip, an electrode array can be navigated through the cochlear hook and the basal turn. Methods Automated insertions of candidate electrode arrays are conducted into a scala-tympani phantom with either a cochleostomy or round-window opening. The phantom is mounted on a multi-degree-of-freedom force sensor. An external magnet applies the necessary magnetic bending torque to the magnetic tip of a modified clinical electrode array, coordinated with the insertion, with the goal of directing the tip down the lumen. Steering of the electrode array is verified through a camera. Results Statistical t-test results indicate that magnetic guidance does reduce insertion forces by as much as 50% with certain electrode-array models. Direct tip contact with the medial wall through the cochlear hook and the lateral wall of the basal turn is completely eliminated. The magnetic field required to accomplish these insertions varied from 77 to 225 mT based on the volume of the magnet at the tip of the electrode array. Alteration of the tip to accommodate a tiny magnet is minimal and does not change the insertion characteristic of the electrode array unless the tip shape is altered. Conclusion Magnetic guidance can eliminate direct tip contact with the medial walls through the cochlear hook and the lateral walls of the basal turn. Insertion-force reduction will vary based on the electrode-array model, but is statistically significant for all models tested. Successful steering of lateral-wall electrode arrays is accomplished while maintaining its superior flexibility.

Journal ArticleDOI
TL;DR: In this article, the role of electrical resistance and geometry of porous electrodes in the performance of microfluidic fuel cells is studied with a three-dimensional numerical model, and Parametric simulations are performed to find proper ways to reduce the electrical resistance, including increasing the electrical conductivity of the electrode, changing the electrode geometry and optimizing the current collector design.
Abstract: Summary Significant electrical resistance is observed in porous electrodes of microfluidic fuel cell due to the size limitation of this energy system. In this work, role of electrical resistance and geometry of porous electrodes in the performance of microfluidic fuel cells is studied with a three-dimensional numerical model. Parametric simulations are performed to find proper ways to reduce the electrical resistance, including increasing the electrical conductivity of the electrode, changing the electrode geometry, and optimizing the current collector design. The results indicate that the cell cannot fully get rid of the negative influences of the electrical resistance by increasing the electrical conductivity due to the material restriction. Decreasing the electrode length or increasing the electrode width is also not feasible due to the trade-off between current and current density. Optimization of the aspect ratio of the electrode active region is proved effective in realizing the enhancement of both current and current density. Extending the current collector area from the exposed end to the active region of the porous electrode is also promising as it can decrease the electrical resistance and boost the cell performance simultaneously. The present findings are generally applicable to various miniaturized fuel cell types using porous electrodes.

Journal ArticleDOI
TL;DR: Psychophysical tuning curves (PTCs) may be used as a site-specific measure of channel interaction that correlates with electrode position in some CI listeners, according to results.
Abstract: Speech understanding abilities vary widely among cochlear implant (CI) listeners. A potential source of this variability is the electrode-neuron interface (ENI), which includes peripheral factors such as electrode position and integrity of remaining spiral ganglion neurons. Suboptimal positioning of the electrode array has been associated with poorer speech outcomes; however, postoperative computerized tomography (CT) scans are often not available to clinicians. CT-estimated electrode-to-modiolus distance (distance from the inner wall of the cochlea) has been shown to account for some variability in behavioral thresholds. However, psychophysical tuning curves (PTCs) may provide additional insight into site-specific variation in channel interaction. Thirteen unilaterally implanted adults with the Advanced Bionics HiRes90K device participated. Behavioral thresholds and PTCs were collected for all available electrodes with steered quadrupolar (sQP) configuration, using a modified threshold sweep procedure, used in Bierer et al. (Trends Hear 19:1-12, 2015). PTC bandwidths were quantified to characterize channel interaction across the electrode array, and tip shifts were assessed to identify possible contributions of neural dead regions. Broader PTC bandwidths were correlated with electrodes farther from the modiolus, but not correlated with sQP threshold, though a trend was observed. Both measures were affected by scalar location, and PTC tip shifts were observed for electrodes farther from the modiolus. sQP threshold was the only variable correlated with word recognition. These results suggest PTCs may be used as a site-specific measure of channel interaction that correlates with electrode position in some CI listeners.

Journal ArticleDOI
TL;DR: In this article, a microarray biosensor that measures the electrical impedance of cell suspensions is presented, which is facilitated by physically positioning individual cells on sensing electrodes by dielectrophoresis, obviating chemical or biological surface modification.
Abstract: A microarray biosensor that measures the electrical impedance of cell suspensions is presented. Single-cell–resolution measurement was facilitated by physically positioning individual cells on sensing electrodes by dielectrophoresis, obviating chemical or biological surface modification. The high-density (104 × 104) electrode array was incorporated with a complementary metal-oxide-semiconductor (CMOS) integrated chip (IC) to support impedance spectroscopy at frequencies ranging from 100 kHz to 1 MHz, achieving a rapid and cost-effective platform with a small form factor. Experiments with microbeads (10, 15, and 20 μm in diameter) and a live breast cancer cell line (MCF-7) have demonstrated that the developed prototype quantifies loaded microbeads or cells rapidly (

Journal ArticleDOI
TL;DR: Two cases of an unusual complication of electrode implantation: tip fold-over of the electrode array within the cochlea are reported, demonstrating the benefit of systematic imaging including the possible use of the Cone Beam CT intraoperatively.
Abstract: Cochlear implantation has been performed safely for over two decades but still has various minor and major complications. We report two cases of an unusual complication of electrode implantation: tip fold-over of the electrode array within the cochlea. Both cases required undergoing explantation and re-implantation. The frequent use of fine and pre-curved electrodes particularly with the use of an insertion tool necessitates routine postoperative radiological evaluation of the electrode array. Our cases demonstrate the benefit of systematic imaging including the possible use of the Cone Beam CT intraoperatively.

Journal ArticleDOI
TL;DR: The group has developed image-guided CI programming techniques (IGCIP), in which image analysis techniques are used to locate the intracochlear position of CI electrodes to determine patient-customized settings for the CI processor.
Abstract: Cochlear implants (CIs) are standard treatment for patients who experience sensorineural hearing loss. Although these devices have been remarkably successful at restoring hearing, it is rare that they permit to achieve natural fidelity and many patients experience poor outcomes. Our group has developed image-guided CI programming techniques (IGCIP), in which image analysis techniques are used to locate the intracochlear position of CI electrodes to determine patient-customized settings for the CI processor. Clinical studies have shown that IGCIP leads to significantly improved outcomes. A crucial step is the localization of the electrodes, and rigorously quantifying the accuracy of our algorithms requires dedicated datasets. We discuss the creation of a ground truth dataset for electrode position and its use to evaluate the accuracy of our electrode localization techniques. Our final ground truth dataset includes 30 temporal bone specimens that were each implanted with one of four different types of electrode array by an experienced CI surgeon. The arrays were localized in conventional CT images using our automatic methods and manually in high-resolution μCT images to create the ground truth. The conventional and μCT images were registered to facilitate comparison between automatic and ground truth electrode localization results. Our technique resulted in mean errors of 0.13 mm in localizing the electrodes across 30 cases. Our approach successfully permitted characterizing the accuracy of our methods, which is critical to understand their limitations for use in IGCIP.

Journal ArticleDOI
02 Aug 2018
TL;DR: In this article, the authors presented an in-depth noise and impedance characterization of two of the most widely used microelectrode arrays (UEA and the Tucker-Davis Technologies (TDT) Microwire Array) and provided quantitative analysis of how properties change when implanted in rodent cortex.
Abstract: This paper presents an in-depth noise and impedance characterization of two of the most widely used microelectrode arrays (the Utah Electrode Array (UEA) and the Tucker-Davis Technologies (TDT) Microwire Array) and provides quantitative analysis of how properties change when implanted in rodent cortex. Custom low-noise circuits and de-embedding methods were designed to acquire ${\rm{nV}}/\sqrt {{\rm{Hz}}} $ noise power spectral densities from high-impedance electrodes. A total of 80 electrodes were implanted across five rats and measured under deep anesthesia, demonstrating a 1.5× to 3× increase in noise and 2.25× to 9× in impedance compared to in vitro measurements. Low-frequency biological noise was also observed and studied through postmortem measurements. These results are informative for designing neural interfacing systems for both neuroscience and medical applications.