scispace - formally typeset
Search or ask a question

Showing papers on "Fading published in 2017"


Posted Content
TL;DR: In this article, a deep learning-based approach for channel estimation and signal detection in orthogonal frequency-division multiplexing (OFDM) channels is presented, which is more robust than conventional methods when fewer training pilots are used, the cyclic prefix is omitted, and nonlinear clipping noise is presented.
Abstract: This article presents our initial results in deep learning for channel estimation and signal detection in orthogonal frequency-division multiplexing (OFDM). OFDM has been widely adopted in wireless broadband communications to combat frequency-selective fading in wireless channels. In this article, we take advantage of deep learning in handling wireless OFDM channels in an end-to-end approach. Different from existing OFDM receivers that first estimate CSI explicitly and then detect/recover the transmitted symbols with the estimated CSI, our deep learning based approach estimates CSI implicitly and recovers the transmitted symbols directly. To address channel distortion, a deep learning model is first trained offline using the data generated from the simulation based on the channel statistics and then used for recovering the online transmitted data directly. From our simulation results, the deep learning based approach has the ability to address channel distortions and detect the transmitted symbols with performance comparable to minimum mean-square error (MMSE) estimator. Furthermore, the deep learning based approach is more robust than conventional methods when fewer training pilots are used, the cyclic prefix (CP) is omitted, and nonlinear clipping noise is presented. In summary, deep learning is a promising tool for channel estimation and signal detection in wireless communications with complicated channel distortions and interferences.

522 citations


Proceedings ArticleDOI
19 Mar 2017
TL;DR: Results show that even at very high Dopplers (500 km#x002F;h), OTFS approaches channel capacity through linear scaling of throughput with the MIMO order, whereas the performance of OFDM under typical design parameters breaks down completely.
Abstract: A new two-dimensional modulation technique called Orthogonal Time Frequency Space (OTFS) modulation designed in the delay-Doppler domain is introduced. Through this design, which exploits full diversity over time and frequency, OTFS coupled with equalization converts the fading, time-varying wireless channel experienced by modulated signals such as OFDM into a time-independent channel with a complex channel gain that is roughly constant for all symbols. Thus, transmitter adaptation is not needed. This extraction of the full channel diversity allows OTFS to greatly simplify system operation and significantly improves performance, particular in systems with high Doppler, short packets, and large antenna arrays. Simulation results indicate at least several dB of block error rate performance improvement for OTFS over OFDM in all of these settings. In addition these results show that even at very high Dopplers (500 km#x002F;h), OTFS approaches channel capacity through linear scaling of throughput with the MIMO order, whereas the performance of OFDM under typical design parameters breaks down completely.

472 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed an approach for channel estimation that is applicable for both flat and frequency-selective fading, based on the Bussgang decomposition that reformulates the nonlinear quantizer as a linear function with identical first and second-order statistics.
Abstract: This paper considers channel estimation and system performance for the uplink of a single-cell massive multiple-input multiple-output system. Each receiver antenna of the base station is assumed to be equipped with a pair of one-bit analog-to-digital converters to quantize the real and imaginary part of the received signal. We first propose an approach for channel estimation that is applicable for both flat and frequency-selective fading, based on the Bussgang decomposition that reformulates the nonlinear quantizer as a linear function with identical first- and second-order statistics. The resulting channel estimator outperforms previously proposed approaches across all SNRs. We then derive closed-form expressions for the achievable rate in flat fading channels assuming low SNR and a large number of users for the maximal ratio and zero forcing receivers that takes channel estimation error due to both noise and one-bit quantization into account. The closed-form expressions, in turn, allow us to obtain insight into important system design issues such as optimal resource allocation, maximal sum spectral efficiency, overall energy efficiency, and number of antennas. Numerical results are presented to verify our analytical results and demonstrate the benefit of optimizing system performance accordingly.

452 citations


Journal ArticleDOI
TL;DR: A detailed investigation on multiple-antenna techniques for guaranteeing secure communications in point-to-point systems, dual-hop relaying systems, multiuser systems, and heterogeneous networks is provided.
Abstract: As a complement to high-layer encryption techniques, physical layer security has been widely recognized as a promising way to enhance wireless security by exploiting the characteristics of wireless channels, including fading, noise, and interference. In order to enhance the received signal power at legitimate receivers and impair the received signal quality at eavesdroppers simultaneously, multiple-antenna techniques have been proposed for physical layer security to improve secrecy performance via exploiting spatial degrees of freedom. This paper provides a comprehensive survey on various multiple-antenna techniques in physical layer security, with an emphasis on transmit beamforming designs for multiple-antenna nodes. Specifically, we provide a detailed investigation on multiple-antenna techniques for guaranteeing secure communications in point-to-point systems, dual-hop relaying systems, multiuser systems, and heterogeneous networks. Finally, future research directions and challenges are identified.

416 citations


Journal ArticleDOI
TL;DR: It is illustrated that, for the 1-bit quantized case, pilot-based channel estimation together with maximal-ratio combing, or zero-forcing detection enables reliable multi-user communication with high-order constellations, in spite of the severe nonlinearity introduced by the ADCs.
Abstract: We investigate the uplink throughput achievable by a multiple-user (MU) massive multiple-input multiple-output (MIMO) system, in which the base station is equipped with a large number of low-resolution analog-to-digital converters (ADCs). Our focus is on the case where neither the transmitter nor the receiver have any a priori channel state information. This implies that the fading realizations have to be learned through pilot transmission followed by channel estimation at the receiver, based on coarsely quantized observations. We propose a novel channel estimator, based on Bussgang’s decomposition, and a novel approximation to the rate achievable with finite-resolution ADCs, both for the case of finite-cardinality constellations and of Gaussian inputs, that is accurate for a broad range of system parameters. Through numerical results, we illustrate that, for the 1-bit quantized case, pilot-based channel estimation together with maximal-ratio combing, or zero-forcing detection enables reliable multi-user communication with high-order constellations, in spite of the severe nonlinearity introduced by the ADCs. Furthermore, we show that the rate achievable in the infinite-resolution (no quantization) case can be approached using ADCs with only a few bits of resolution. We finally investigate the robustness of low-ADC-resolution MU-MIMO uplink against receive power imbalances between the different users, caused for example by imperfect power control.

372 citations


Journal ArticleDOI
TL;DR: In this paper, the authors derived the downlink coverage probability of a reference receiver located at an arbitrary position on the ground assuming Nakagami-$m$ fading for all wireless links.
Abstract: In this paper, we consider a finite network of unmanned aerial vehicles serving a given region. Modeling this network as a uniform binomial point process, we derive the downlink coverage probability of a reference receiver located at an arbitrary position on the ground assuming Nakagami- $m$ fading for all wireless links. The reference receiver is assumed to connect to its closest transmitting node as is usually the case in cellular systems. After deriving the distribution of distances from the reference receiver to the serving and interfering nodes, we derive an exact expression for downlink coverage probability in terms of the derivative of Laplace transform of interference power distribution. In the downlink of this system, it is not unusual to encounter scenarios in which the line-of-sight component is significantly stronger than the reflected multipath components. To emulate such scenarios, we also derive the coverage probability in the absence of fading from the results of Nakagami- $m$ fading by taking the limit $m \to \infty$ . Using asymptotic expansion of incomplete gamma function, we concretely show that this limit reduces to a redundant condition. Consequently, we derive an accurate coverage probability approximation for this case using dominant interferer-based approach in which the effect of dominant interferer is exactly captured and the residual interference from other interferers is carefully approximated. We then derive the bounds of the approximate coverage probability using Berry-Esseen theorem. Our analyses reveal several useful trends in coverage probability as a function of height of the transmitting nodes and the location of reference receiver on the ground.

348 citations


Journal ArticleDOI
TL;DR: This paper attempts to maximize the ergodic capacity of the V2I connections while ensuring reliability guarantee for each V2V link, and proposes novel algorithms that yield optimal resource allocation and are robust to channel variations.
Abstract: The widely deployed cellular network, assisted with device-to-device (D2D) communications, can provide a promising solution to support efficient and reliable vehicular communications. Fast channel variations caused by high mobility in a vehicular environment need to be properly accounted for when designing resource allocation schemes for the D2D-enabled vehicular networks. In this paper, we perform spectrum sharing and power allocation based only on slowly varying large-scale fading information of wireless channels. Pursuant to differing requirements for different types of links, i.e., high capacity for vehicle-to-infrastructure (V2I) links and ultrareliability for vehicle-to-vehicle (V2V) links, we attempt to maximize the ergodic capacity of the V2I connections while ensuring reliability guarantee for each V2V link. Sum ergodic capacity of all V2I links is first taken as the optimization objective to maximize the overall V2I link throughput. Minimum ergodic capacity maximization is then considered to provide a more uniform capacity performance across all V2I links. Novel algorithms that yield optimal resource allocation and are robust to channel variations are proposed. Their desirable performance is confirmed by computer simulation.

302 citations


Journal ArticleDOI
TL;DR: This paper considers a NOMA-based relaying networks over Nakagami-$m$ fading channels, where the base station communicates with multiple mobile users simultaneously through the help of an amplify-and-forward (AF) relay and reports to outperform conventional OMA and provide better spectral efficiency and user fairness.
Abstract: Nonorthogonal multiple access (NOMA), which can improve the spectrum efficiency and system throughput compared with conventional orthogonal multiple access (OMA), has been regarded as a promising technique for the fifth-generation (5G) mobile communication network. In this paper, we consider a NOMA-based relaying networks over Nakagami- $m$ fading channels, where the base station communicates with multiple mobile users simultaneously through the help of an amplify-and-forward (AF) relay. First, we study the system outage behavior, and closed-form expressions for the exact outage probability and simple bounds of the outage probability are obtained, respectively. The analytical results are further evaluated in the high-signal-to-noise-ratio (SNR) regime to explicitly characterize the diversity order of the network. Next, the ergodic sum rate achieved by the network is investigated, and expressions for the lower and upper bounds of the ergodic sum rate are derived. Finally, numerical examples are conducted to confirm the validity of our analysis and show a comparison of NOMA against conventional OMA networks. NOMA is reported to outperform conventional OMA and provide better spectral efficiency and user fairness.

234 citations


Journal ArticleDOI
TL;DR: The advances of DFE algorithms for networked systems are reviewed, including data quantization, random transmission delays, packet dropouts, fading measurements and communication disturbances, and some random phenomena induced by networks are discussed.

221 citations


Journal ArticleDOI
TL;DR: Analytically show that a legacy system—employing an orthogonal frequency-division multiplexing (OFDM) modulation scheme—can turn the RF interference arising from the backscatter process into a form of multipath diversity that can be exploited to increase its performance.
Abstract: Ambient backscatter is an intriguing wireless communication paradigm that allows small devices to compute and communicate by using only the power they harvest from far-field radio-frequency (RF) signals in the air. Ambient backscattering devices reflect RF signals emitted by existing or legacy communications systems, such as digital TV broadcasting, cellular, or Wi-Fi ones, which are designed for transporting information and are not intended for RF energy transfer. This paper deals with mathematical modeling and performance analysis of wireless broadband networks operating over fading channels with ambient backscatter devices. After introducing a detailed signal model of the relevant communication links, we study the influence of physical parameters on the capacity of both legacy and backscatter channels, by considering different receiver architectures. We analytically show that, under reasonable operative conditions, a legacy system—employing an orthogonal frequency-division multiplexing (OFDM) modulation scheme—can turn the RF interference arising from the backscatter process into a form of multipath diversity that can be exploited to increase its performance. Moreover, our analysis proves that a backscatter system—transmitting one symbol per OFDM symbol of the legacy system—can achieve satisfactory data rates over relatively short distances, especially when the intended recipient of the backscatter signal is co-located with the legacy transmitter, i.e., they are on the same device.

195 citations


Journal ArticleDOI
TL;DR: An analyticalexpression for the secrecy outage probability (SOP) is derived and the asymptotic expression for the SOP in the high main-to-eavesdropper ratio regime is derived in order to study the impact of both channel correlation and outdated relay selection on the secrecy performance.
Abstract: In this paper, we study the impact of correlated fading on the secrecy performance of multiple decode-and-forward (DF) relaying with outdated relay selection. It is assumed that the information transmission, assisted by $N$ DF relays from the source to the destination, can be overheard by an eavesdropper. Particularly, we consider the realistic scenario where the eavesdropper's and the main channels are correlated. In order to enhance the network security, the best relay is selected among $N$ available DF relays to assist the secure transmission. Due to the time-varying channel environments, we note that the selected relay may be outdated. In order to study the impact of both channel correlation and outdated relay selection on the secrecy performance, we first derive an analytical expression for the secrecy outage probability (SOP). Also, we derive the asymptotic expression for the SOP in the high main-to-eavesdropper ratio regime. Numerical results are provided to demonstrate the correctness of our analytical expressions.

Journal ArticleDOI
TL;DR: This paper analytically studies the performance of multiple-input multiple-output underwater wireless optical communication (UWOC) systems with ON–OFF keying modulation and shows that spatial diversity can considerably improve the system performance, especially for channels with higher turbulence.
Abstract: In this paper, we analytically study the performance of multiple-input multiple-output underwater wireless optical communication (UWOC) systems with ON–OFF keying modulation. To mitigate turbulence-induced fading, which is amongst the major degrading effects of underwater channels on the propagating optical signal, we use spatial diversity over UWOC links. Furthermore, the effects of absorption and scattering are considered in our analysis. We analytically obtain the exact and an upper bound bit error rate (BER) expressions for both optimal and equal gain combining. In order to more effectively calculate the system BER, we apply Gauss-Hermite quadrature formula as well as approximation to the sum of lognormal random variables. We also apply the photon-counting method to evaluate the system BER in the presence of shot noise. Our numerical results indicate an excellent match between the exact and upper bound BER curves. Also, a good match between the analytical results and numerical simulations confirms the accuracy of our derived expressions. Moreover, our results show that spatial diversity can considerably improve the system performance, especially for channels with higher turbulence, e.g., a $3\times 1$ multiple-input single-output transmission in a 25 m coastal water link with a log-amplitude variance of 0.16 can introduce 8 dB performance improvement at the BER of 10−9.

Journal ArticleDOI
Yongjun Liu1, Guisheng Liao1, Jingwei Xu1, Zhiwei Yang1, Yuhong Zhang1 
TL;DR: An adaptive orthogonal frequency division multiplexing integrated radar and communications waveform design method is proposed, and with low transmit power, the designed integrated waveform outperforms the fixed waveform.
Abstract: To improve the effectiveness of limited spectral resources, an adaptive orthogonal frequency division multiplexing integrated radar and communications waveform design method is proposed. First, the conditional mutual information (MI) between the random target impulse response and the received signal, and the data information rate (DIR) of frequency selective fading channel are formulated. Then, with the constraint on the total power, the optimization problem, which simultaneously considers the conditional MI for radar and DIR for communications, is devised, and the analytic solution is derived. With low transmit power, the designed integrated waveform outperforms the fixed waveform (i.e., equal power allocation). Finally, several simulated experiments are provided to verify the effectiveness of the designed waveform.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a CANDECOMP/PARAFAC decomposition-based method for channel estimation for mmWave MIMO-OFDM systems, where both the base station (BS) and the mobile station (MS) employ large antenna arrays for directional precoding/beamforming.
Abstract: We consider the problem of downlink channel estimation for millimeter wave (mmWave) MIMO-OFDM systems, where both the base station (BS) and the mobile station (MS) employ large antenna arrays for directional precoding/beamforming. Hybrid analog and digital beamforming structures are employed in order to offer a compromise between hardware complexity and system performance. Different from most existing studies that are concerned with narrowband channels, we consider estimation of wideband mmWave channels with frequency selectivity, which is more appropriate for mmWave MIMO-OFDM systems. By exploiting the sparse scattering nature of mmWave channels, we propose a CANDECOMP/PARAFAC (CP) decomposition-based method for channel parameter estimation (including angles of arrival/departure, time delays, and fading coefficients). In our proposed method, the received signal at the MS is expressed as a third-order tensor. We show that the tensor has the form of a low-rank CP, and the channel parameters can be estimated from the associated factor matrices. Our analysis reveals that the uniqueness of the CP decomposition can be guaranteed even when the size of the tensor is small. Hence the proposed method has the potential to achieve substantial training overhead reduction. We also develop Cramer-Rao bound (CRB) results for channel parameters and compare our proposed method with a compressed sensing-based method. Simulation results show that the proposed method attains mean square errors that are very close to their associated CRBs and present a clear advantage over the compressed sensing-based method.

Journal ArticleDOI
TL;DR: A novel phase-detection DFVS is developed, which effectively eliminates the weak-fading-point and the relationship between phase noise and the intensity of backscattering is analyzed, and the inner-pulse frequency-division method and rotated-vector-sum method are introduced to effectively suppress phase noise.
Abstract: For a distributed fiber-optic vibration sensor (DFVS), the vibration signal extracted from the phase of backscattering has a linear response to the applied vibration, and is more attractive than that from the intensity term. However, the large phase noise at a random weak-fading-point seriously limits the sensor's credibility. In this paper, a novel phase-detection DFVS is developed, which effectively eliminates the weak-fading-point. The relationship between phase noise and the intensity of backscattering is analyzed, and the inner-pulse frequency-division method and rotated-vector-sum method are introduced to effectively suppress phase noise. In experiments, two simultaneous vibrations along the 35-kilometer-long fiber are clearly detected by phase detection with the signal-to-noise ratio (SNR) over 26 dB. The spatial resolution approaches 5 m and the vibration response bandwidth is 1.25 kHz.

Journal ArticleDOI
TL;DR: The mmWave channel sounder described here may be used for accurate spatial and temporal ray-tracing calibration, to identify individual multipath components, to measure antenna patterns, for constructing spatial profiles of mmWave channels, and for developing statistical channel impulse response models in time and space.
Abstract: This paper presents a novel ultrawideband wireless spread spectrum millimeter-wave (mmWave) channel sounder that supports both a wideband sliding correlator mode and a realtime spread spectrum mode, also known as wideband correlation or direct correlation. Both channel sounder modes are capable of absolute propagation delay (time of flight) measurements with up to 1 GHz of radio frequency null-to-null bandwidth, and can measure multipath with a 2-ns time resolution. The sliding correlator configuration facilitates long-distance measurements with angular spread and delay spread for up to 185 dB of maximum measurable path loss. The real-time spread spectrum mode is shown to support short-range, small-scale temporal, and Doppler measurements (minimum snapshot sampling interval of 32.753 μs) with a substantial dynamic fading range of 40 dB for human blockage and dynamic urban scenarios. The channel sounder uses field programmable gate arrays, analog-to-digital converters, digital-to-analog converters, and low-phase-noise rubidium standard references for frequency/time synchronization and absolute time delay measurements. Using propagation theory, several methods are presented here to calibrate and verify the accuracy of the channel sounder, and an improved diffraction model for human blockage, based on the METIS model but now including directional antenna gains, is developed from measurements using the channel sounder. The mmWave channel sounder described here may be used for accurate spatial and temporal raytracing calibration, to identify individual multipath components, to measure antenna patterns, for constructing spatial profiles of mmWave channels, and for developing statistical channel impulse response models in time and space.

Journal ArticleDOI
TL;DR: This paper quantifies the impact of correlated fading on secure communication of multiple amplify-and-forward (AF) relaying networks and concludes that the channel correlation is always beneficial to the secrecy performance of full relay selection, however, it deteriorates the confidentiality performance if partial-relay selection is used.
Abstract: This paper quantifies the impact of correlated fading on secure communication of multiple amplify-and-forward (AF) relaying networks. In such a network, the base station (BS) is equipped with multiple antennas and communicates with the destination through multiple AF relays, while the message from the relays can be overheard by an eavesdropper. We focus on the practical communication scenario, where the main and eavesdropper’s channels are correlated. In order to enhance the transmission security, transmit antenna selection is performed at the BS, and the best relay is chosen according to the full- or partial-relay selection criterion, which relies on the dual-hop relay channels or the second-hop relay channels, respectively. For these criteria, we study the impact of correlated fading on the network secrecy performance, by deriving an analytical approximation for the secrecy outage probability and an asymptotic expression for the high main-to-eavesdropper ratio. From these results, it is concluded that the channel correlation is always beneficial to the secrecy performance of full relay selection. However, it deteriorates the secrecy performance if partial-relay selection is used, when the number of antennas at the BS is less than the number of relays.

Journal ArticleDOI
TL;DR: This paper identifies the optimal cache-aided degrees-of-freedom (DoF) within a factor of 4, by identifying near-optimal schemes that exploit a new synergy between coded caching and delayed CSIT, as well as by exploiting the unexplored interplay between caching and feedback-quality.
Abstract: Building on the recent coded-caching breakthrough by Maddah-Ali and Niesen, the work here considers the $K$ -user cache-aided wireless multi-antenna symmetric broadcast channel with random fading and imperfect feedback, and analyzes the throughput performance as a function of feedback statistics and cache size. In this setting, this paper identifies the optimal cache-aided degrees-of-freedom (DoF) within a factor of 4, by identifying near-optimal schemes that exploit a new synergy between coded caching and delayed CSIT, as well as by exploiting the unexplored interplay between caching and feedback-quality. The DoF expressions reveal an initial gain due to current CSIT, and an additional gain due to coded caching, which is exponential in the sense that any linear decrease in the required DoF performance, allows for an exponential reduction in the required cache size. In the end, this paper reveals three new aspects of caching: a synergy between memory and delayed feedback, a tradeoff between memory and current CSIT, and a powerful ability to provide cache-aided feedback savings.

Proceedings ArticleDOI
07 Mar 2017
TL;DR: A covert communication system under block fading channels is considered, where users experience uncertainty about their channel knowledge and the exact expression for the radiometer's optimal threshold is derived, which determines the performance limit of the warden's detector.
Abstract: A covert communication system under block fading channels is considered, where users experience uncertainty about their channel knowledge. The transmitter seeks to hide the covert communication to a private user by exploiting a legitimate public communication link, while the warden tries to detect this covert communication by using a radiometer. We derive the exact expression for the radiometer's optimal threshold, which determines the performance limit of the warden's detector. Furthermore, for given transmission outage constraints, the achievable rates for legitimate and covert users are analyzed, while maintaining a specific level of covertness. Our numerical results illustrate how the achievable performance is affected by the channel uncertainty and required level of covertness.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a proactive eavesdropping via cognitive jamming approach, in which the legitimate monitor purposely jams the receiver in a full-duplex mode so as to change the suspicious communication (e.g., to a smaller data rate) for overhearing more efficiently.
Abstract: To enhance the national security, there is a growing need for authorized parties to legitimately monitor suspicious communication links for preventing intended crimes and terror attacks. In this paper, we propose a new wireless information surveillance paradigm by investigating a scenario, where a legitimate monitor aims to intercept a suspicious wireless link over fading channels. The legitimate monitor can successfully eavesdrop (decode) the information of the suspicious link at each fading state only when its achievable data rate is no smaller than that at the suspicious receiver. We propose a new approach, namely, proactive eavesdropping via cognitive jamming, in which the legitimate monitor purposely jams the receiver in a full-duplex mode so as to change the suspicious communication (e.g., to a smaller data rate) for overhearing more efficiently. By assuming perfect self-interference cancelation (SIC) and global channel state information (CSI) at the legitimate monitor, we characterize the fundamental information-theoretic limits of proactive eavesdropping. We consider both delay-sensitive and delay-tolerant applications for the suspicious communication, under which the legitimate monitor maximizes the eavesdropping non-outage probability (for event-based monitoring) and the relative eavesdropping rate (for content analysis), respectively, by optimizing the jamming power allocation over different fading states subject to an average power constraint. Numerical results show that the proposed proactive eavesdropping via cognitive jamming approach greatly outperforms other benchmark schemes. Furthermore, by extending to a more practical scenario with residual SI and local CSI, we design an efficient online cognitive jamming scheme inspired by the optimal cognitive jamming with perfect SIC and global CSI.

Journal ArticleDOI
TL;DR: Numerical results are presented to show that, when a large amount of harvested power is required, a single harvester or the linear range of a practical nonlinear harvesters are more efficient, to avoid power outage.
Abstract: In this paper, we study the average, the probability density function, and the cumulative distribution function of the harvested power. The signals are transmitted from multiple sources. The channels are assumed to be either Rician fading or Gamma-shadowed Rician fading. The received signals are then harvested by using either a single harvester for simultaneous transmissions or multiple harvesters for transmissions at different frequencies, antennas or time slots. Both linear and nonlinear models for the energy harvester at the receiver are examined. Numerical results are presented to show that, when a large amount of harvested power is required, a single harvester or the linear range of a practical nonlinear harvester are more efficient, to avoid power outage. Further, the power transfer strategy can be optimized for fixed total power. Specifically, for Rayleigh fading, the optimal strategy is to put the total power at the source with the best channel condition and switch off all other sources, while for general Rician fading, the optimum magnitudes and phases of the transmitting waveforms depend on the channel parameters.

Journal ArticleDOI
TL;DR: Channel-aware decision fusion in a wireless sensor network (WSN), where the sensors transmit their decisions simultaneously for spectral efficiency purposes and the DF center (DFC) is equipped with multiple antennas, is studied.
Abstract: In this paper, we study channel-aware decision fusion (DF) in a wireless sensor network (WSN), where the sensors transmit their decisions simultaneously for spectral efficiency purposes and the DF center (DFC) is equipped with multiple antennas. Also, each sensor-DFC channel is described via a Rician model. As opposed to the existing literature, in order to account for stringent energy constraints in the WSN, only statistical channel information is assumed for the non-line-of-sight (scattered) fading terms. For such a scenario, suboptimal fusion rules are developed in order to deal with the exponential complexity of the likelihood ratio test (LRT) and impractical (complete) system knowledge. Furthermore, the considered model is extended to the case of (partially unknown) jamming-originated interference. Then, the obtained fusion rules are modified with the use of composite hypothesis testing framework and generalized LRT. Coincidence and statistical equivalence among them are also investigated under some relevant simplified scenarios. Numerical results compare the proposed rules and highlight their jamming-suppression capability.

Journal ArticleDOI
TL;DR: A new hierarchical codebook is proposed to achieve uniform BA performance with low overhead and a power allocation scheme used in different training stages to further improve the BA performance is proposed.
Abstract: Owing to abundant spectrum resources, millimeter wave (mmwave) communication promises to provide Gbps data rates, which, however, may be restricted by large path-loss. Thus, antenna arrays are commonly used along with beam alignment (BA) as an important step to achieve the array gain. Efficient BA relies on the beam training codebook design. In this paper, we propose a new hierarchical codebook to achieve uniform BA performance with low overhead. To better elaborate on the design principle, a single-path channel model is considered first to frame the proposal. The codebook design is formulated as an optimization problem, where the ripple in the main/side lobes is constrained such that each training beam is close to the ideal one with a flat magnitude response and a narrow transition band. Then, we propose an efficient algorithm to find such a beam training codebook. Furthermore, we derive closed-form expressions of the BA misalignment probability or error rate of the proposed beam training codebook. Our results reveal that using the proposed codebook, the error rate of tree-search-based BA exponentially decreases with the SNR for a given channel, and linearly decreases in the log–log coordinate axis for a fading channel. We further propose a power allocation scheme used in different training stages to further improve the BA performance. Finally, the proposed framework is extended to the more complex case of multi-path channels. Numerical results confirm the effectiveness of the proposed training codebook and power allocation scheme as well as the accuracy of the performance analysis.

Journal ArticleDOI
TL;DR: This paper proposes a novel non-orthogonal multiple access (NOMA)-based cooperative transmission scheme for a spectrum-sharing cognitive radio network (CRN), whereby a secondary transmitter serves as a relay and helps transmit the primary and secondary messages simultaneously by employing NOMA signaling.
Abstract: This paper proposes a novel non-orthogonal multiple access (NOMA)-based cooperative transmission scheme for a spectrum-sharing cognitive radio network (CRN), whereby a secondary transmitter (ST) serves as a relay and helps transmit the primary and secondary messages simultaneously by employing NOMA signaling. This cooperation is particularly useful when the ST has good channel conditions to a primary receiver but lacks the radio spectrum. To evaluate the performance of the proposed scheme, the outage probability and system throughput for the primary and secondary networks are derived in closed forms. Simulation results demonstrate the superior performance gains for both networks thanks to the use of the proposed NOMA-based cooperative transmission scheme. It is also revealed that NOMA outperforms conventional orthogonal multiple access (OMA) and achieves better spectrum utilization.

Proceedings ArticleDOI
01 Jul 2017
TL;DR: In this article, a peer-to-peer measurement campaign was conducted with 7o, 15o, and 60o half-power beamwidth (HPBW) antenna pairs at 73.5 GHz and with 1 GHz of RF nullto-null bandwidth in a heavily populated open square scenario in Brooklyn, New York, to study blockage events caused by typical pedestrian traffic.
Abstract: Rapidly fading channels caused by pedestrians in dense urban environments will have a significant impact on millimeter-wave (mmWave) communications systems that employ electrically-steerable and narrow beamwidth antenna arrays. A peer- to-peer (P2P) measurement campaign was conducted with 7o, 15o, and 60o half- power beamwidth (HPBW) antenna pairs at 73.5 GHz and with 1 GHz of RF null-to-null bandwidth in a heavily populated open square scenario in Brooklyn, New York, to study blockage events caused by typical pedestrian traffic. Antenna beamwidths that range approximately an order of magnitude were selected to gain knowledge of fading events for antennas with different beamwidths since antenna patterns for mmWave systems will be electronically-adjustable. Two simple modeling approaches in the literature are introduced to characterize the blockage events by either a two-state Markov model or a four-state piecewise linear modeling approach. Transition probability rates are determined from the measurements and it is shown that average fade durations with a -5 dB threshold are 299.0 ms for 7o HPBW antennas and 260.2 ms for 60o HPBW antennas. The four-state piecewise linear modeling approach shows that signal strength decay and rise times are asymmetric for blockage events and that mean signal attenuations (average fade depths) are inversely proportional to antenna HPBW, where 7o and 60o HPBW antennas resulted in mean signal fades of 15.8 dB and 11.5 dB, respectively. The models presented herein are valuable for extending statistical channel models at mmWave to accurately simulate real- world pedestrian blockage events when designing fifth-generation (5G) wireless systems.

Journal ArticleDOI
TL;DR: Simulation results unveil that NOMA is capable of outperforming orthogonal multiple access (OMA) in terms of outage probability and system throughput and can provide better fairness compared with conventional OMA.
Abstract: This paper studies the application of cooperative techniques for non-orthogonal multiple access (NOMA). More particularly, the fixed gain amplify-and-forward (AF) relaying with NOMA is investigated over Nakagami- $m$ fading channels. Two scenarios are considered insightfully: 1) the first scenario is that the base station (BS) intends to communicate with multiple users through the assistance of AF relaying, where the direct links are existent between the BS and users and 2) the second scenario is that the AF relaying is inexistent between the BS and users. To characterize the performance of the considered scenarios, new closed-form expressions for both exact and asymptomatic outage probabilities are derived. Based on the analytical results, the diversity orders achieved by the users are obtained. For the first and second scenarios, the diversity order for the $n$ th user are $\mu (n+1)$ and $\mu \text{n}$ , respectively. Simulation results unveil that NOMA is capable of outperforming orthogonal multiple access (OMA) in terms of outage probability and system throughput. It is also worth noting that NOMA can provide better fairness compared with conventional OMA. By comparing the two scenarios, cooperative NOMA scenario can provide better outage performance relative to the second scenario.

Journal ArticleDOI
TL;DR: In this paper, the fluctuating two-ray (FTR) fading model is introduced, which is a new statistical channel model that consists of two fluctuating specular components with random phases plus a diffuse component, and all the chief probability functions of the FTR fading model are expressed in closed-form, having a functional form similar to other state-of-the-art fading models.
Abstract: We introduce the fluctuating two-ray (FTR) fading model, a new statistical channel model that consists of two fluctuating specular components with random phases plus a diffuse component. The FTR model arises as the natural generalization of the two-wave with diffuse power (TWDP) fading model; this generalization allows its two specular components to exhibit a random amplitude fluctuation. Unlike the TWDP model, all the chief probability functions of the FTR fading model (PDF, CDF, and MGF) are expressed in closed-form, having a functional form similar to other state-of-the-art fading models. We also provide approximate closed-form expressions for the PDF and CDF in terms of a finite number of elementary functions, which allow for a simple evaluation of these statistics to an arbitrary level of precision. We show that the FTR fading model provides a much better fit than Rician fading for recent small-scale fading measurements in 28 GHz outdoor mm-wave channels. Finally, the performance of wireless communication systems over FTR fading is evaluated in terms of the bit error rate and the outage capacity, and the interplay between the FTR fading model parameters and the system performance is discussed. Monte Carlo simulations have been carried out in order to validate the obtained theoretical expressions.

Journal ArticleDOI
TL;DR: Numerical results demonstrate that multi-hop transmission, by alleviating channel impairments, can significantly improve the system performance and extend the viable end-to-end communication distance.
Abstract: In this letter, we analytically evaluate the end-to-end bit error rate (BER) of point-to-point multi-hop underwater wireless optical communication (UWOC) systems with respect to all degrading effects of the UWOC channel, namely absorption, scattering, and turbulence-induced fading. To do so, we first derive the BER expression of a single-hop UWOC link as the building block for end-to-end BER evaluation. We also apply Gauss–Hermite quadrature formula to obtain the closed-form solution for the system BER in the case of lognormal underwater fading channel. Numerical results demonstrate that multi-hop transmission, by alleviating channel impairments, can significantly improve the system performance and extend the viable end-to-end communication distance.

Journal ArticleDOI
TL;DR: Comparisons with physical channel data demonstrate that the proposed composite fading model provides as good, and in most cases better, fit to the data compared to the generalized- $K$ composite fade model.
Abstract: We consider the use of the Fisher-Snedecor ${\mathcal {F}}$ distribution, which is defined as the ratio of two chi-squared variates, to model composite fading channels. In this context, the root-mean-square power of a Nakagami- $m$ signal is assumed to be subject to variations induced by an inverse Nakagami- $m$ random variable. Comparisons with physical channel data demonstrate that the proposed composite fading model provides as good, and in most cases better, fit to the data compared to the generalized- $K$ composite fading model. Motivated by this result, simple novel expressions are derived for the key statistical metrics and performance measures of interest.

Journal ArticleDOI
TL;DR: An amplify-and-forward-based overlay spectrum sharing protocol using partial and opportunistic secondary network selection schemes to minimize the outage probability of the primary satellite system and, thereby, to explore spectrum sharing opportunities.
Abstract: In this paper, we study a hybrid satellite-terrestrial spectrum sharing system (HSTSSS) in which multiple terrestrial secondary networks cooperate with a primary satellite network for dynamic spectrum access. For complexity-aware HSTSSS design, we propose an amplify-and-forward-based overlay spectrum sharing protocol using partial and opportunistic secondary network selection schemes. The secondary network selection aims to minimize the outage probability of the primary satellite system and, thereby, to explore spectrum sharing opportunities. With the overlay approach, the selected secondary network allocates part of its power to relay the satellite signal and utilizes the remaining power to transmit its own signal. Considering Shadowed-Rician fading for satellite links, and Nakagami- ${m}$ as well as Rician fading for terrestrial links, we derive closed-form expressions for the outage probability of both primary and secondary networks, and examine their achievable diversity orders. Numerical and simulation results validate our analysis and highlight the performance gains of the proposed schemes for an HSTSSS with and without a direct satellite primary communication link.