scispace - formally typeset
Search or ask a question

Showing papers on "Non-equilibrium thermodynamics published in 2012"


Book
12 Nov 2012
TL;DR: In this article, the authors present a microscopic demonstration of the Second Law of Thermodynamics directly from mechanics, linking Lyapunov-unstable microscopic motions to macroscopic motions.
Abstract: Hardbound. Computational Statistical Mechanics describes the use of fast computers to simulate the equilibrium and nonequilibrium properties of gases, liquids, and solids at, and away from equilibrium. The underlying theory is developed from basic principles and illustrated by applying it to the simplest possible examples. Thermodynamics, based on the ideal gas thermometer, is related to Gibb's statistical mechanics through the use of Nos-Hoover heat reservoirs. These reservoirs use integral feedback to control temperature. The same approach is carried through to the simulation and analysis of nonequilibrium mass, momentum, and energy flows. Such a unified approach makes possible consistent mechanical definitions of temperature, stress, and heat flux which lead to a microscopic demonstration of the Second Law of Thermodynamics directly from mechanics. The intimate connection linking Lyapunov-unstable microscopic motions to macroscopic

528 citations


Journal ArticleDOI
TL;DR: A general theory of chemical kinetics, developed over the past 7 years, is presented, capable of answering questions about how reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed in terms of variational chemical potentials.
Abstract: Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations In condensed matter, strong interactions alter chemical activities and create inhomogeneities that can dramatically affect the reaction rate The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend on the order parameter -- and its gradients, at phase boundaries This Account presents a general theory of chemical kinetics based on nonequilibrium thermodynamics The reaction rate is a nonlinear function of the thermodynamic driving force (free energy of reaction) expressed in terms of variational chemical potentials The Cahn-Hilliard and Allen-Cahn equations are unified and extended via a master equation for non-equilibrium chemical thermodynamics For electrochemistry, both Marcus and Butler-Volmer kinetics are generalized for concentrated solutions and ionic solids The theory is applied to intercalation dynamics in the phase separating Li-ion battery material Li$_x$FePO$_4$

440 citations



Journal ArticleDOI
TL;DR: A friction tensor is derived that induces a Riemannian manifold on the space of thermodynamic states that controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties within the linear-response regime.
Abstract: A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

299 citations


Journal ArticleDOI
TL;DR: The fluctuation theorem is established in the presence of information exchange between a nonequilibrium system and other degrees of freedom such as an observer and a feedback controller, and the resulting generalized second law sets the fundamental limit of energy dissipation and energy cost during the information exchange.
Abstract: We establish the fluctuation theorem in the presence of information exchange between a nonequilibrium system and other degrees of freedom such as an observer and a feedback controller, where the amount of information exchange is added to the entropy production. The resulting generalized second law sets the fundamental limit of energy dissipation and energy cost during the information exchange. Our results apply not only to feedback-controlled processes but also to a much broader class of information exchanges, and provide a unified framework of nonequilibrium thermodynamics of measurement and feedback control.

258 citations


Journal ArticleDOI
TL;DR: In this article, the authors reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations, using principles of non-equilibrium thermodynamics, and relate the cell voltage, ionic fluxes and Faradaic charge transfer kinetics to the variational electrochemical potentials of ions and electrons.
Abstract: We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model predicts narrow reaction fronts, mosaic instabilities and voltage fluctuations at low current, consistent with recent experiments, which could not be described by existing porous electrode models.

238 citations


Posted Content
TL;DR: In this paper, the authors reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations, using principles of non-equilibrium thermodynamics, and relate the cell voltage, ionic fluxes and Faradaic charge transfer kinetics to the variational electrochemical potentials of ions and electrons.
Abstract: We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model predicts narrow reaction fronts, mosaic instabilities and voltage fluctuations at low current, consistent with recent experiments, which could not be described by existing porous electrode models.

229 citations


Journal ArticleDOI
TL;DR: In this article, a model of dissipative dielectric elastomers on the basis of nonequilibrium thermodynamics is proposed to predict the dynamic response of the elastomer and the leakage current behavior under large deformation and for long durations.
Abstract: The dynamic performance of dielectric elastomer transducers and their capability of electromechanical energy conversion are affected by dissipative processes, such as viscoelasticity, dielectric relaxation, and current leakage. This paper describes a method to construct a model of dissipative dielectric elastomers on the basis of nonequilibrium thermodynamics. We characterize the state of the dielectric elastomer with kinematic variables through which external loads do work, and internal variables that measure the progress of the dissipative processes. The method is illustrated with examples motivated by existing experiments of polyacrylate very-high-bond dielectric elastomers. This model predicts the dynamic response of the dielectric elastomer and the leakage current behavior. We show that current leakage can be significant under large deformation and for long durations. Furthermore, current leakage can result in significant hysteresis for dielectric elastomers under cyclic voltage.

217 citations


Journal ArticleDOI
TL;DR: An experimental study of nonequilibrium thermodynamics in a classical two-state system, namely, a metallic single-electron box, is presented, measuring with high statistical accuracy the distribution of dissipated energy as single electrons are transferred between the box electrodes.
Abstract: Recent progress on micro- and nanometer-scale manipulation has opened the possibility to probe systems small enough that thermal fluctuations of energy and coordinate variables can be significant compared with their mean behavior. We present an experimental study of nonequilibrium thermodynamics in a classical two-state system, namely, a metallic single-electron box. We have measured with high statistical accuracy the distribution of dissipated energy as single electrons are transferred between the box electrodes. The obtained distributions obey Jarzynski and Crooks fluctuation relations. A comprehensive microscopic theory exists for the system, enabling the experimental distributions to be reproduced without fitting parameters.

199 citations


Journal ArticleDOI
TL;DR: The properties of the various contributions to total entropy production are explored through the consideration of two examples: steady-state heat conduction due to a temperature gradient, and transitions between stationary states of drift diffusion on a ring, both in the context of the full phase space dynamics of a single Brownian particle.
Abstract: Total entropy production and its three constituent components are described both as fluctuating trajectory-dependent quantities and as averaged contributions in the context of the continuous Markovian dynamics, described by stochastic differential equations with multiplicative noise, of systems with both odd and even coordinates with respect to time reversal, such as dynamics in full phase space. Two of these constituent quantities obey integral fluctuation theorems and are thus rigorously positive in the mean due to Jensen's inequality. The third, however, is not and furthermore cannot be uniquely associated with irreversibility arising from relaxation, nor with the breakage of detailed balance brought about by nonequilibrium constraints. The properties of the various contributions to total entropy production are explored through the consideration of two examples: steady-state heat conduction due to a temperature gradient, and transitions between stationary states of drift diffusion on a ring, both in the context of the full phase space dynamics of a single Brownian particle.

138 citations


Journal ArticleDOI
TL;DR: A stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation is presented, finding a singularity at the critical point of the linear-logarithm type.
Abstract: We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.

Journal ArticleDOI
TL;DR: By treating the quench as a thermodynamic transformation it is shown that the emergence of irreversibility in the nonequilibrium dynamics of closed many-body quantum systems can be accurately characterized.
Abstract: We study the statistics of the work done, fluctuation relations, and irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we show that the emergence of irreversibility in the nonequilibrium dynamics of closed many-body quantum systems can be accurately characterized. We demonstrate our ideas by considering a transverse quantum Ising model that is taken out of equilibrium by an instantaneous change of the transverse field.

Journal ArticleDOI
TL;DR: The relevance of information contained in cross correlations among different degrees of freedom, which is crucial in nonequilibrium systems, is discussed, in particular a stochastic system where two degrees offreedom X{1} and X{2}-in contact with two different thermostats-are coupled together.
Abstract: We discuss the relevance of information contained in cross correlations among different degrees of freedom, which is crucial in nonequilibrium systems. In particular we consider a stochastic system where two degrees of freedom X{1} and X{2}-in contact with two different thermostats-are coupled together. The production of entropy and the violation of equilibrium fluctuation-dissipation theorem (FDT) are both related to the cross correlation between X{1} and X{2}. Information about such cross correlation may be lost when single-variable reduced models for X_{1} are considered. Two different procedures are typically applied: (a) one totally ignores the coupling with X{2}; and (b) one models the effect of X{2} as an average memory effect, obtaining a generalized Langevin equation. In case (a) discrepancies between the system and the model appear both in entropy production and linear response; the latter can be exploited to define effective temperatures, but those are meaningful only when time scales are well separated. In case (b) linear response of the model well reproduces that of the system; however the loss of information is reflected in a loss of entropy production. When only linear forces are present, such a reduction is dramatic and makes the average entropy production vanish, posing problems in interpreting FDT violations.

Journal ArticleDOI
TL;DR: A general dynamical density functional theory is derived which shows very good agreement with full Langevin dynamics and a Navier-Stokes-like equation with additional nonlocal terms is recovered.
Abstract: We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.

Journal ArticleDOI
TL;DR: An integral fluctuation theorem is obtained when the stationary probability distribution is symmetric for all variables that are odd under time reversal, which restricts consideration of directional variables such as velocity.
Abstract: The total entropy production of stochastic systems can be divided into three quantities. The first corresponds to the excess heat, while the second two comprise the housekeeping heat. We denote these two components the transient and generalized housekeeping heat and we obtain an integral fluctuation theorem for the latter, valid for all Markovian stochastic dynamics. A previously reported formalism is obtained when the stationary probability distribution is symmetric for all variables that are odd under time reversal, which restricts consideration of directional variables such as velocity.

Journal ArticleDOI
TL;DR: In this paper, the authors construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously.
Abstract: A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first-order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory.

Journal ArticleDOI
TL;DR: This work proposes a novel formulation for a soft-core potential to be applied in nonequilibrium free energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all combinations of nonbonded interactions at all intermediate alchemical states.
Abstract: The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change of the system's Hamiltonian with respect to a coupling parameter. These methods exploit nonphysical pathways over thermodynamic cycles involving particle introduction and annihilation. Such alchemical transitions require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid singularity points. In this work, we propose a novel formulation for a soft-core potential to be applied in nonequilibrium free energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all combinations of nonbonded interactions at all intermediate alchemical states. The method was validated by application to (a) the free energy calculations of a closed thermodynamic cycle, (b) the mutation influence on protein thermostability, (c) calculations of small ligand solvation free energies, and (d) the estimation of binding free energies of trypsin inhibitors. The results show that the novel soft-core function provides a robust and accurate general purpose solution to alchemical free energy calculations.

Journal ArticleDOI
TL;DR: In this paper, the authors compare the results of nonequilibrium (NEMD) and equilibrium molecular dynamics methods to compute the thermal conductance at the interface between solids.
Abstract: In this article, we compare the results of nonequilibrium (NEMD) and equilibrium (EMD) molecular dynamics methods to compute the thermal conductance at the interface between solids. We propose to probe the thermal conductance using equilibrium simulations measuring the decay of the thermally induced energy fluctuations of each solid. We also show that NEMD and EMD give generally speaking inconsistent results for the thermal conductance: Green-Kubo simulations probe the Landauer conductance between two solids which assumes phonons on both sides of the interface to be at equilibrium. On the other hand, we show that NEMD give access to the out-of-equilibrium interfacial conductance consistent with the interfacial flux describing phonon transport in each solid. The difference may be large and reaches typically a factor 5 for interfaces between usual semiconductors. We analyze finite size effects for the two determinations of the interfacial thermal conductance, and show that the equilibrium simulations suffer from severe size effects as compared to NEMD. We also compare the predictions of the two above-mentioned methods---EMD and NEMD---regarding the interfacial conductance of a series of mass mismatched Lennard-Jones solids. We show that the Kapitza conductance obtained with EMD can be well described using the classical diffuse mismatch model (DMM). On the other hand, NEMD simulation results are consistent with an out-of-equilibrium generalization of the acoustic mismatch model (AMM). These considerations are important in rationalizing previous results obtained using molecular dynamics, and help in pinpointing the physical scattering mechanisms taking place at atomically perfect interfaces between solids, which is a prerequisite to understand interfacial heat transfer across real interfaces.

Journal ArticleDOI
TL;DR: The analytical procedure to obtain the explicit result for the reduced density matrix of quantum transport when the system, the connecting reservoirs, and the system-reservoir interactions are described by quadratic Hamiltonians is described.
Abstract: With this work we investigate the stationary nonequilibrium density matrix of current carrying nonequilibrium steady states of in-between quantum systems that are connected to reservoirs. We describe the analytical procedure to obtain the explicit result for the reduced density matrix of quantum transport when the system, the connecting reservoirs, and the system-reservoir interactions are described by quadratic Hamiltonians. Our procedure is detailed for both electronic transport described by the tight-binding Hamiltonian and for phonon transport described by harmonic Hamiltonians. For the special case of weak system-reservoir couplings, a more detailed description of the steady-state density matrix is obtained. Several paradigm transport setups for interelectrode electron transport and low-dimensional phonon heat flux are elucidated.

Journal ArticleDOI
TL;DR: In this paper, a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot is presented, where the rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain bias by using time-resolved charge detection with a quantum point contact.
Abstract: We present a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain bias by using time-resolved charge detection with a quantum point contact. We find that these trajectories appear with a frequency that agrees with the theoretical predictions even under strong nonequilibrium conditions, when the finite bandwidth of the charge detection is taken into account. The second law of thermodynamics states that a macroscopic system out of thermal equilibrium will irreversibly move toward equilibrium driven by a steady increase of its entropy. This macroscopic irreversibility occurs despite the time-reversal symmetry of the underlying microscopic equations of motion. Also, a microscopic system will undergo an irreversible evolution on a long time scale, but, over a sufficiently short observation time � , both entropy-producing trajectories as well as their timereversed entropy-consuming counterparts occur. It is only because of the statistics of these occurrences that a longterm irreversible evolution is established. This phenomenon is described by the fluctuation theorem [1,2]. Irrespective of the description of the trajectories being system-specific, the fluctuation theorem (FT) relates the probabilities P� ð� SÞ for processes that change the entropy

Book
05 Sep 2012
TL;DR: In this paper, a distribution, BBGKY hierarchy, density operator, probability density as a fluid, microscopic balance equations density operator and onsager relations are discussed. And the linear response theory, fluctuation-disipation theorem, correlation functions are defined and properties.
Abstract: Part 1 Stochastic processes and the master equation: stochastic processes Markovian processes master equations Kramers Moyal expansion Brownian motion, Langevian and Fokker-Planck equations. Part 2 Distribution, BBGKY hierarchy, density operator: probability density as a fluid BBGKY hierarchy microscopic balance equations density operator. Part 3 Linear nonequilibrium thermodynamics and onsager relations: onsager regretion to equilibrium hipotesis onsager relations minimum production of entropy. Part 4 Linear response theory, fluctuation-disipation theorem: correlation functions - definitions and properties linear response theory fluctuation-disipation theorem. Part 5 Instabilities and far from equilibrium phase-transitions: instabilities, bifurcations, limit circles noise induced transitions pattern formation - reaction-diffusion pattern propagation.

Journal ArticleDOI
TL;DR: This work is able to provide a general proof that all single-time correlations of the open system evolve to those of the closed system thermal state, to first order in the relaxation rates.
Abstract: In this work we investigate the late-time steady states of open quantum systems coupled to a thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution if the coupling to the thermal reservoir is nonvanishing or equivalently if the relaxation time scales are finite. Using a variety of nonequilibrium formalisms valid for non-Markovian processes, we show that starting from a product state of the closed system $=$ system+environment, with the environment in its thermal state, the open system which results from coarse graining the environment will evolve towards an equilibrium state at late times. This state can be expressed as the reduced state of the closed system thermal state at the temperature of the environment. For a linear (harmonic) system and environment, which is exactly solvable, we are able to show in a rigorous way that all multitime correlations of the open system evolve towards those of the closed system thermal state. Multitime correlations are especially relevant in the non-Markovian regime, since they cannot be generated by the dynamics of the single-time correlations. For more general systems, which cannot be exactly solved, we are able to provide a general proof that all single-time correlations of the open system evolve to those of the closed system thermal state, to first order in the relaxation rates. For the special case of a zero-temperature reservoir, we are able to explicitly construct the reduced closed system thermal state in terms of the environmental correlations.

Book
14 Sep 2012
TL;DR: In this article, a unified proof of the Second Law of Thermodynamics with feedback control is presented, and nonequilibrium Equalities with Feedback Control is shown to be equivalent to feedback control.
Abstract: Review of Maxwell's Demon.- Classical Dynamics, Measurement, and Information.- Quantum Dynamics, Measurement, and Information.- Unitary Proof of the Second Law of Thermodynamics.- Second Law with Feedback Control.- Thermodynamics of Memories.- Stochastic Thermodynamics.- Nonequilibrium Equalities with Feedback Control.-Conclusions.

Journal ArticleDOI
TL;DR: The two-dimensional velocity distribution functions are obtained to report the molecular-based entropy distribution, and it is shown that the cold-to-hot heat transfer in the cavity is well in accordance with the second law of thermodynamics and takes place in the direction of increasing entropy.
Abstract: In this study the direct-simulation Monte Carlo (DSMC) method is utilized to investigate thermal characteristics of micro- or nanocavity flow. The rarefied cavity flow shows unconventional behaviors which cannot be predicted by the Fourier law, the constitutive relation for the continuum heat transfer. Our analysis in this study confirms some recent observations and shows that the gaseous flow near the top-left corner of the cavity is in a strong nonequilibrium state even within the early slip regime, Kn=0.005. As we obtained slip velocity and temperature jump on the driven lid of the cavity, we reported meaningful discrepancies between the direct and macroscopic sampling of rarefied flow properties in the DSMC method due to existence of nonequilibrium effects in the corners of cavity. The existence of unconventional nonequilibrium heat transfer mechanisms in the middle of slip regime, Kn=0.05, results in the appearance of cold-to-hot heat transfer in the microcavity. In the current study we demonstrate that existence of such unconventional heat transfer is strongly dependent on the Reynolds number and it vanishes in the large values of the lid velocity. As we compared DSMC solution with the results of regularized 13 moments (R13) equations, we showed that the thermal characteristic of the microcavity obtained by the R13 method coincides with the DSMC prediction. Our investigation also includes the analysis of molecular entropy in the microcavity to explain the heat transfer mechanism with the aid of the second law of thermodynamics. To this aim, we obtained the two-dimensional velocity distribution functions to report the molecular-based entropy distribution, and show that the cold-to-hot heat transfer in the cavity is well in accordance with the second law of thermodynamics and takes place in the direction of increasing entropy. At the end we introduce the entropy density for the rarefied flow and show that it can accurately illustrate departure from the equilibrium state.

Journal ArticleDOI
TL;DR: In this article, two extensions of the original mass-action-law dynamics with fluxes and forces are discussed in detail, and all the time evolution equations arising in the extended dynamics are proven to be compatible among themselves and with equilibrium thermodynamics.

Journal ArticleDOI
TL;DR: In this paper, the authors derived a formally exact expression for the probability distribution of a driven system, which involves path ensemble averages of the work over trajectories of the time-reversed system.
Abstract: A central endeavor of thermodynamics is the measurement of free energy changes. Regrettably, although we can measure the free energy of a system in thermodynamic equilibrium, typically all we can say about the free energy of a nonequilibrium ensemble is that it is larger than that of the same system at equilibrium. Herein, we derive a formally exact expression for the probability distribution of a driven system, which involves path ensemble averages of the work over trajectories of the time-reversed system. From this we find a simple near-equilibrium approximation for the free energy in terms of an excess mean time-reversed work, which can be experimentally measured on real systems. With analysis and computer simulation, we demonstrate the accuracy of our approximations for several simple models.

Journal ArticleDOI
TL;DR: The nonequilibrium steady states of the one-dimensional discrete nonlinear Schrödinger equation are studied and it is found that the Onsager coefficients are finite in the thermodynamic limit, i.e., transport is normal.
Abstract: We study nonequilibrium steady states of the one-dimensional discrete nonlinear Schrodinger equation. This system can be regarded as a minimal model for the stationary transport of bosonic particles such as photons in layered media or cold atoms in deep optical traps. Due to the presence of two conserved quantities, namely, energy and norm (or number of particles), the model displays coupled transport in the sense of linear irreversible thermodynamics. Monte Carlo thermostats are implemented to impose a given temperature and chemical potential at the chain ends. As a result, we find that the Onsager coefficients are finite in the thermodynamic limit, i.e., transport is normal. Depending on the position in the parameter space, the "Seebeck coefficient" may be either positive or negative. For large differences between the thermostat parameters, density and temperature profiles may display an unusual nonmonotonic shape. This is due to the strong dependence of the Onsager coefficients on the state variables.

Journal ArticleDOI
TL;DR: In this paper, a model of nonequilibrium quantum transport of particles and energy in a system connected to mesoscopic Fermi reservoirs (mesoreservoirs) is proposed.
Abstract: We propose a model of nonequilibrium quantum transport of particles and energy in a system connected to mesoscopic Fermi reservoirs (mesoreservoir). The mesoreservoirs are in turn thermalized to prescribed temperatures and chemical potentials by a simple dissipative mechanism described by the Lindblad equation. As an example, we study transport in monoatomic and diatomic chains of noninteracting spinless fermions. We show numerically the breakdown of the Onsager reciprocity relation due to the dissipative terms of the model.

Journal ArticleDOI
TL;DR: This review surveys kinetic models coupled with time-reversible deterministic thermostats for the modeling of large systems composed both by inert matter particles and living entities and a variety of thermostatted mathematical models in physics and life sciences.

Journal ArticleDOI
TL;DR: General analytical expressions relating the equilibrium fluctuations of a grain boundary to key parameters governing its motion coupled to shear deformation are derived and validated by molecular dynamics simulations for symmetrical tilt boundaries and used to extract the misorientation dependence of the grain-boundary mobility.
Abstract: We derive general analytical expressions relating the equilibrium fluctuations of a grain boundary to key parameters governing its motion coupled to shear deformation. We validate these expressions by molecular dynamics simulations for symmetrical tilt boundaries and demonstrate how they can be used to extract the misorientation dependence of the grain-boundary mobility. The results shed light on fundamental relationships between equilibrium and nonequilibrium grain-boundary properties and provide new means to predict those properties.