scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Chemical Theory and Computation in 2012"


Journal ArticleDOI
TL;DR: The results indicate that the revised CHARMM 36 parameters represent an improved model for the modeling and simulation studies of proteins, including studies of protein folding, assembly and functionally relevant conformational changes.
Abstract: While the quality of the current CHARMM22/CMAP additive force field for proteins has been demonstrated in a large number of applications, limitations in the model with respect to the equilibrium between the sampling of helical and extended conformations in folding simulations have been noted. To overcome this, as well as make other improvements in the model, we present a combination of refinements that should result in enhanced accuracy in simulations of proteins. The common (non Gly, Pro) backbone CMAP potential has been refined against experimental solution NMR data for weakly structured peptides, resulting in a rebalancing of the energies of the α-helix and extended regions of the Ramachandran map, correcting the α-helical bias of CHARMM22/CMAP. The Gly and Pro CMAPs have been refitted to more accurate quantum-mechanical energy surfaces. Side-chain torsion parameters have been optimized by fitting to backbone-dependent quantum-mechanical energy surfaces, followed by additional empirical optimization targeting NMR scalar couplings for unfolded proteins. A comprehensive validation of the revised force field was then performed against data not used to guide parametrization: (i) comparison of simulations of eight proteins in their crystal environments with crystal structures; (ii) comparison with backbone scalar couplings for weakly structured peptides; (iii) comparison with NMR residual dipolar couplings and scalar couplings for both backbone and side-chains in folded proteins; (iv) equilibrium folding of mini-proteins. The results indicate that the revised CHARMM 36 parameters represent an improved model for the modeling and simulation studies of proteins, including studies of protein folding, assembly and functionally relevant conformational changes.

3,421 citations


Journal ArticleDOI
TL;DR: MMPBSA.py is a program written in Python for streamlining end-state free energy calculations using ensembles derived from molecular dynamics or Monte Carlo simulations, including the Poisson-Boltzmann Model and several implicit solvation models.
Abstract: MM-PBSA is a post-processing end-state method to calculate free energies of molecules in solution. MMPBSA.py is a program written in Python for streamlining end-state free energy calculations using ensembles derived from molecular dynamics (MD) or Monte Carlo (MC) simulations. Several implicit solvation models are available with MMPBSA.py, including the Poisson–Boltzmann Model, the Generalized Born Model, and the Reference Interaction Site Model. Vibrational frequencies may be calculated using normal mode or quasi-harmonic analysis to approximate the solute entropy. Specific interactions can also be dissected using free energy decomposition or alanine scanning. A parallel implementation significantly speeds up the calculation by dividing frames evenly across available processors. MMPBSA.py is an efficient, user-friendly program with the flexibility to accommodate the needs of users performing end-state free energy calculations. The source code can be downloaded at http://ambermd.org/ with AmberTools, rele...

2,528 citations


Journal ArticleDOI
TL;DR: An implementation of generalized Born implicit solvent all-atom classical molecular dynamics within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs) and shows performance that is on par with, and in some cases exceeds, that of traditional supercomputers.
Abstract: We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to performance, we have focused on understanding the implications of the different precision models on the outcome of implicit solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that is on par with, and in some cases exceeds, that of traditional supercomputers.

1,645 citations


Journal ArticleDOI
TL;DR: A new approach to density functional theory that mimics successfully, to the best of the authors' knowledge for the first time, the quasi-particle picture of many-body theory and produces the correct optical gap for the difficult case of charge-transfer and charge- transfer-like scenarios, where conventional functionals are known to fail.
Abstract: Excitation gaps are of considerable significance in electronic structure theory. Two different gaps are of particular interest. The fundamental gap is defined by charged excitations, as the difference between the first ionization potential and the first electron affinity. The optical gap is defined by a neutral excitation, as the difference between the energies of the lowest dipole-allowed excited state and the ground state. Within many-body perturbation theory, the fundamental gap is the difference between the corresponding lowest quasi-hole and quasi-electron excitation energies, and the optical gap is addressed by including the interaction between a quasi-electron and a quasi-hole. A long-standing challenge has been the attainment of a similar description within density functional theory (DFT), with much debate on whether this is an achievable goal even in principle. Recently, we have constructed and applied a new approach to this problem. Anchored in the rigorous theoretical framework of the generaliz...

735 citations


Journal ArticleDOI
TL;DR: A benchmark for force fields is devised in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant.
Abstract: The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on expe...

602 citations


Journal ArticleDOI
TL;DR: The CM5 model predicts dipole moments for the tested molecules that are more accurate on average than those from the original Hirshfeld method or from many other popular schemes including atomic polar tensor and Löwdin, Mulliken, and natural population analyses.
Abstract: We propose a novel approach to deriving partial atomic charges from population analysis. The new model, called Charge Model 5 (CM5), yields class IV partial atomic charges by mapping from those obtained by Hirshfeld population analysis of density functional electronic charge distributions. The CM5 model utilizes a single set of parameters derived by fitting to reference values of the gas-phase dipole moments of 614 molecular structures. An additional test set (not included in the CM5 parametrization) contained 107 singly charged ions with nonzero dipole moments, calculated from the accurate electronic charge density, with respect to the center of nuclear charges. The CM5 model is applicable to any charged or uncharged molecule composed of any element of the periodic table in the gas phase or in solution. The CM5 model predicts dipole moments for the tested molecules that are more accurate on average than those from the original Hirshfeld method or from many other popular schemes including atomic polar ten...

600 citations


Journal ArticleDOI
TL;DR: This work critically assesses the ability of the all-atom enhanced sampling method accelerated molecular dynamics (aMD) to investigate conformational changes in proteins that typically occur on the millisecond time scale and combines aMD with the inherent power of graphics processor units (GPUs) and applies the implementation to the bovine pancreatic trypsin inhibitor.
Abstract: In this work, we critically assess the ability of the all-atom enhanced sampling method accelerated molecular dynamics (aMD) to investigate conformational changes in proteins that typically occur on the millisecond time scale. We combine aMD with the inherent power of graphics processor units (GPUs) and apply the implementation to the bovine pancreatic trypsin inhibitor (BPTI). A 500 ns aMD simulation is compared to a previous millisecond unbiased brute force MD simulation carried out on BPTI, showing that the same conformational space is sampled by both approaches. To our knowledge, this represents the first implementation of aMD on GPUs and also the longest aMD simulation of a biomolecule run to date. Our implementation is available to the community in the latest release of the Amber software suite (v12), providing routine access to millisecond events sampled from dynamics simulations using off the shelf hardware.

449 citations


Journal ArticleDOI
TL;DR: The new CHARMM model better reproduces experimentally observed sampling of the BII conformation, including sampling as a function of sequence, and yields a stable Z-DNA conformation of duplex (GTACGTAC) in its crystal environment.
Abstract: The B-form of DNA can populate two different backbone conformations: BI and BII, defined by the difference between the torsion angles e and ζ (BI = e-ζ 0). BI is the most populated state, but the population of the BII state, which is sequence dependent, is significant and accumulating evidence shows that BII affects the overall structure of DNA, and thus influences protein-DNA recognition. This work presents a reparametrization of the CHARMM27 additive nucleic acid force field to increase the sampling of the BII form in MD simulations of DNA. In addition, minor modifications of sugar puckering were introduced to facilitate sampling of the A form of DNA under the appropriate environmental conditions. Parameter optimization was guided by quantum mechanical data on model compounds, followed by calculations on several DNA duplexes in the condensed phase. The selected optimized parameters were then validated against a number of DNA duplexes, with the most extensive tests performed on the EcoRI dodecamer, including comparative calculations using the Amber Parm99bsc0 force field. The new CHARMM model better reproduces experimentally observed sampling of the BII conformation, including sampling as a function of sequence. In addition, the model reproduces the A form of the 1ZF1 duplex in 75 % ethanol, and yields a stable Z-DNA conformation of duplex (GTACGTAC) in its crystal environment. The resulting model, in combination with a recent reoptimization of the CHARMM27 force field for RNA, will be referred to as CHARMM36.

444 citations


Journal ArticleDOI
TL;DR: It is shown that the optimized parameter set (L-OPLS) yields improved hydrocarbon diffusion coefficients, viscosities, and gauche-trans ratios, and its applicability for lipid bilayer simulations is shown for a GMO bilayer in its liquid-crystalline phase.
Abstract: The all-atom optimized potentials for liquid simulations (OPLS-AA) force field is a popular force field for simulating biomolecules. However, the current OPLS parameters for hydrocarbons developed using short alkanes cannot reproduce the liquid properties of long alkanes in molecular dynamics simulations. Therefore, the extension of OPLS-AA to (phospho)lipid molecules required for the study of biological membranes was hampered in the past. Here, we optimized the OPLS-AA force field for both short and long hydrocarbons. Following the framework of the OPLS-AA parametrization, we refined the torsional parameters for hydrocarbons by fitting to the gas-phase ab initio energy profiles calculated at the accurate MP2/aug-cc-pVTZ theory level. Additionally, the depth of the Lennard-Jones potential for methylene hydrogen atoms was adjusted to reproduce the densities and the heats of vaporization of alkanes and alkenes of different lengths. Optimization of partial charges finally allowed to reproduce the gel-to-liqu...

436 citations


Journal ArticleDOI
TL;DR: A new generation of both hydrogen-bonding and dispersion corrections that address problems, make the method more robust, and improve its accuracy are introduced, which can accurately describe a wider range of interactions.
Abstract: Semiempirical quantum mechanical methods with corrections for noncovalent interactions, namely dispersion and hydrogen bonds, reach an accuracy comparable to much more expensive methods while being applicable to very large systems (up to 10 000 atoms). These corrections have been successfully applied in computer-assisted drug design, where they significantly improve the correlation with the experimental data. Despite these successes, there are still several unresolved issues that limit the applicability of these methods. We introduce a new generation of both hydrogen-bonding and dispersion corrections that address these problems, make the method more robust, and improve its accuracy. The hydrogen-bonding correction has been completely redesigned and for the first time can be used for geometry optimization and molecular-dynamics simulations without any limitations, as it and its derivatives have a smooth potential energy surface. The form of this correction is simpler than its predecessors, while the accur...

411 citations


Journal ArticleDOI
TL;DR: A new hybrid density functional is introduced, APF, which avoids the spurious long-range attractive or repulsive interactions that are found in most density functional theory (DFT) models and provides a sound baseline for the addition of an empirical dispersion correction term, which is developed from a spherical atom model (SAM).
Abstract: A new hybrid density functional, APF, is introduced, which avoids the spurious long-range attractive or repulsive interactions that are found in most density functional theory (DFT) models. It therefore provides a sound baseline for the addition of an empirical dispersion correction term, which is developed from a spherical atom model (SAM). The APF-D empirical dispersion model contains nine adjustable parameters that were selected based on a very small training set (15 noble gas dimers and 4 small hydrocarbon dimers), along with two computed atomic properties (ionization potential and effective atomic polarizability) for each element. APF-D accurately describes a large portion of the potential energy surfaces of complexes of noble gas atoms with various diatomic molecules involving a wide range of elements and of dimers of small hydrocarbons, and it reproduces the relative conformational energies of organic molecules. The accuracy for these weak interactions is comparable to that of CCSD(T)/aug-cc-pVTZ c...

Journal ArticleDOI
TL;DR: It turned out that PBE0 and M06 are the most effective functionals in terms of average deviation, however, both the M06-2X global hybrid that contains more exact exchange and the CAM-B3LYP range-separated hybrid significantly improve the consistency of the prediction for a relatively negligible degradation of the average error.
Abstract: Using TD-DFT, we performed simulations of the adiabatic energies of 40 fluorescent molecules for which the experimental 0–0 energies in condensed phase are available. We used six hybrid functionals (B3LYP, PBE0, M06, M06-2X, CAM-B3LYP, and LC-PBE) that have been shown to provide accurate transition energies in previous TD-DFT assessments, selected two diffuse-containing basis sets, and applied the most recent models for estimating bulk solvation effects. In each case, the correction arising from the difference of zero-point vibrational energies between the ground and the excited states has been consistently determined. Basis set effects have also been carefully studied. It turned out that PBE0 and M06 are the most effective functionals in terms of average deviation (mean absolute error of 0.22–0.23 eV). However, both the M06-2X global hybrid that contains more exact exchange and the CAM-B3LYP range-separated hybrid significantly improve the consistency of the prediction for a relatively negligible degrada...

Journal ArticleDOI
TL;DR: The compatibility with amino acid FFs from the AMBER family is tested in explicit transmembrane complexes of the WALP23 peptide with DLPC and DOPC bilayers, and this shows that Slipids can be used to study more complex and biologically relevant systems.
Abstract: Biological membranes are versatile in composition and host intriguing molecular processes. In order to be able to study these systems, an accurate model Hamiltonian or force field (FF) is a necessity. Here, we report the results of our extension of earlier developed all-atomistic FF parameters for fully saturated phospholipids that complements an earlier parameter set for saturated phosphatidylcholine lipids (J. Phys. Chem. B, 2012, 116, 3164–3179). The FF, coined Slipids (Stockholm lipids), now also includes parameters for unsaturated phosphatidylcholine and phosphatidylethanolamine lipids, e.g., POPC, DOPC, SOPC, POPE, and DOPE. As the extended set of parameters is derived with the same philosophy as previously applied, the resulting FF has been developed in a fully consistent manner. The capabilities of Slipids are demonstrated by performing long simulations without applying any surface tension and using the correct isothermal–isobaric (NPT) ensemble for a range of temperatures and carefully comparing ...

Journal ArticleDOI
TL;DR: Of the force fields examined, two force fields combining recent side chain and backbone torsion modifications achieve high accuracy in the authors' benchmark, suggesting that extracting additional force field improvements from NMR data may require increased accuracy in J coupling and chemical shift prediction.
Abstract: Recent hardware and software advances have enabled simulation studies of protein systems on biophysically relevant time scales, often revealing the need for improved force fields. Although early force field development was limited by the lack of direct comparisons between simulation and experiment, recent work from several laboratories has demonstrated direct calculation of NMR observables from protein simulations. Here, we quantitatively evaluate 11 recent molecular dynamics force fields in combination with 5 solvent models against a suite of 524 chemical shift and J coupling (3JHNHα, 3JHNCβ, 3JHαC′, 3JHNC′, and 3JHαN) measurements on dipeptides, tripeptides, tetra-alanine, and ubiquitin. Of the force fields examined (ff96, ff99, ff03, ff03*, ff03w, ff99sb*, ff99sb-ildn, ff99sb-ildn-phi, ff99sb-ildn-NMR, CHARMM27, and OPLS-AA), two force fields (ff99sb-ildn-phi, ff99sb-ildn-NMR) combining recent side chain and backbone torsion modifications achieved high accuracy in our benchmark. For the two optimal for...

Journal ArticleDOI
TL;DR: By considering the one-electron transition density matrix, a wealth of information is recovered that may be missed by manually analyzing the wave function, and insight into the intrinsic structure of the exciton is readily obtained.
Abstract: A procedure for a detailed analysis of excited states in systems of interacting chromophores is proposed. By considering the one-electron transition density matrix, a wealth of information is recovered that may be missed by manually analyzing the wave function. Not only are the position and spatial extent given, but insight into the intrinsic structure of the exciton is readily obtained as well. For example, the method can differentiate between excitonic and charge resonance interactions even in completely symmetric systems. Four examples are considered to highlight the utility of the approach: interactions between the nπ* states in a formaldehyde dimer, excimer formation in the naphthalene dimer, stacking interaction in an adenine dimer, and the excitonic band structure in a conjugated phenylenevinylene oligomer.

Journal ArticleDOI
TL;DR: This work calculates the acidity of the silanol groups at the interface directly from the DFTMD simulations, without any fitting of parameters to the experimental data, and shows how the silanols orientation and their hydrogen bond properties are responsible for an amphoteric behavior of the surface.
Abstract: Silica is the most abundant metal oxide and the main component of the Earth’s crust. Its behavior in contact with water plays a critical role in a variety of geochemical and environmental processes. Despite its key role, the details of the aqueous silica interface at the microscopic molecular level are still elusive. Here we provide such a detailed understanding of the molecular behavior of the silica–water interface, using density functional theory based molecular dynamics (DFTMD) simulations, where a consistent treatment of the electronic structure of solvent and surface is provided. We have calculated the acidity of the silanol groups at the interface directly from the DFTMD simulations, without any fitting of parameters to the experimental data. We find two types of silanol groups at the surface of quartz: out-of-plane silanols with a strong acidic character (pKa = 5.6), which consequently results in the formation of strong and short hydrogen bonds with water molecules at the interface, and in-plane s...

Journal ArticleDOI
TL;DR: The results support the ability of the newly developed parameters to improve the kinetic description of the Mg(2+) and phosphate ions and their applicability in nucleic acid simulation.
Abstract: Magnesium ions have an important role in the structure and folding mechanism of ribonucleic acid systems. To properly simulate these biophysical processes, the applied molecular models should reproduce, among other things, the kinetic properties of the ions in water solution. Here, we have studied the kinetics of the binding of magnesium ions with water molecules and nucleic acid systems using molecular dynamics simulation in detail. We have validated the parameters used in biomolecular force fields, such as AMBER and CHARMM, for Mg2+ ions and also for the biologically relevant ions Na+, K+, and Ca2+ together with three different water models (TIP3P, SPC/E, and TIP5P). The results show that Mg2+ ions have a slower exchange rate than Na+, K+, and Ca2+ in agreement with the experimental trend, but the simulated value underestimates the experimentally observed Mg2+–water exchange rate by several orders of magnitude, irrespective of the force field and water model. A new set of parameters for Mg2+ was develop...

Journal ArticleDOI
TL;DR: In this paper, the appearance of nonadditive kinetic energy contributions in this context poses significant challenges, but using optimized effective potential (OEP) methods, various groups have devised DFT-in-DFT methods that are equivalent to Kohn-Sham (KS) theory on the whole system.
Abstract: Density functional theory (DFT) provides a formally exact framework for quantum embedding. The appearance of nonadditive kinetic energy contributions in this context poses significant challenges, but using optimized effective potential (OEP) methods, various groups have devised DFT-in-DFT methods that are equivalent to Kohn–Sham (KS) theory on the whole system. This being the case, we note that a very considerable simplification arises from doing KS theory instead. We then describe embedding schemes that enforce Pauli exclusion via a projection technique, completely avoiding numerically demanding OEP calculations. Illustrative applications are presented using DFT-in-DFT, wave-function-in-DFT, and wave-function-in-Hartree–Fock embedding, and using an embedded many-body expansion.

Journal ArticleDOI
TL;DR: The N12 functional is the first exchange-correlation functional depending only on the spin-labeled electron densities and their reduced gradients that simultaneously provides good accuracy for the four key energetic and structural properties of solids and molecules, namely, solid-state cohesive energies and lattice constants and molecular atomization energies and bond lengths.
Abstract: The generalized gradient approximation (GGA) has been a workhorse exchange–correlation functional for electronic structure studies of extended systems (liquid-phase reactions, solids, heterogeneous and enzymatic catalysis, biopolymers) because its dependence on only the spin-labeled electron densities and their reduced gradients makes it the most affordable choice that produces realistic results for thermochemistry. However, much recent research has focused on its poor performance for solid-state lattice constants; the results for lattice constants can be improved but only at the cost of making the energetic predictions worse. In the present article, we propose a new density functional, called N12, which may be thought of as a generalization of range-separated functionals. The N12 functional depends only on the spin-labeled electron densities and their reduced gradients, but with a new kind of nonseparable term that gives it much greater flexibility. The N12 functional is the first exchange–correlation fu...

Journal ArticleDOI
TL;DR: Comparisons to a variety of other charge assignment methods show that the DDEC/c3 net atomic charges are well-suited for constructing flexible force-fields for atomistic simulations.
Abstract: We develop a nonempirical atoms-in-molecules (AIM) method for computing net atomic charges that simultaneously reproduce chemical states of atoms in a material and the electrostatic potential V(r) outside its electron distribution. This method gives accurate results for a variety of periodic and nonperiodic materials including molecular systems, solid surfaces, porous solids, and nonporous solids. This method, called DDEC/c3, improves upon our previously published DDEC/c2 method (Manz, T. A.; Sholl, D. S. J. Chem. Theory Comput. 2010, 6, 2455–2468) by accurately treating nonporous solids with short bond lengths. Starting with the theory all AIM charge partitioning functionals with spherically symmetric atomic weights must satisfy, the form of the DDEC/c3 functional is derived from first principles. The method is designed to converge robustly by avoiding conditions that lead to nearly flat optimization landscapes. In addition to net atomic charges, the method can also compute atomic multipoles and atomic s...

Journal ArticleDOI
TL;DR: Results from simulations using GGA density functionals (BLYP, PBE, and revPBE) with data from their van der Waals (vdW) corrected counterparts demonstrate the delicacy needed in describing weak interactions in molecular liquids.
Abstract: We investigate the accuracy provided by different treatments of the exchange and correlation effects, in particular the London dispersion forces, on the properties of liquid water using ab initio molecular dynamics simulations with density functional theory. The lack of London dispersion forces in generalized gradient approximations (GGAs) is remedied by means of dispersion-corrected atom-centered potentials (DCACPs) or damped atom-pairwise dispersion corrections of the C6R(-6) form. We compare results from simulations using GGA density functionals (BLYP, PBE, and revPBE) with data from their van der Waals (vdW) corrected counterparts. As pointed out previously, all vdW-corrected BLYP simulations give rise to highly mobile water whose softened structure is closer to experimental data than the one predicted by the bare BLYP functional. Including vdW interactions in the PBE functional, on the other hand, has little influence on both structural and dynamical properties of water. Augmenting the revPBE functional with either damped atom-pairwise dispersion corrections or DCACP evokes opposite behaviors. The former further softens the already under-structured revPBE water, whereas the latter makes it more glassy. These results demonstrate the delicacy needed in describing weak interactions in molecular liquids.

Journal ArticleDOI
TL;DR: A set of 40 noncovalent complexes of organic halides, halohydrides, and halogen molecules where the halogens participate in a variety of interaction types is presented to assess the accuracy of selected post-HF methods.
Abstract: We present a set of 40 noncovalent complexes of organic halides, halohydrides, and halogen molecules where the halogens participate in a variety of interaction types. The set, named X40, covers electrostatic interactions, London dispersion, hydrogen bonds, halogen bonding, halogen−π interactions, and stacking of halogenated aromatic molecules. Interaction energies at equilibrium geometries were calculated using a composite CCSD(T)/CBS scheme where the CCSD(T) contribution is calculated using triple-ζ basis sets with diffuse functions on all atoms but hydrogen. For each complex, we also provide 10 points along the dissociation curve calculated at the CCSD(T)/CBS level. We use this accurate reference to assess the accuracy of selected post-HF methods.

Journal ArticleDOI
TL;DR: Several algorithms for stochastic dynamics, including Langevin dynamics and different variants of Dissipative Particle Dynamics (DPD), applicable to systems with or without constraints are presented, showing that the measured thermal relaxation rates agree well with theoretical predictions.
Abstract: In this article, we present several algorithms for stochastic dynamics, including Langevin dynamics and different variants of Dissipative Particle Dynamics (DPD), applicable to systems with or without constraints. The algorithms are based on the impulsive application of friction and noise, thus avoiding the computational complexity of algorithms that apply continuous friction and noise. Simulation results on thermostat strength and diffusion properties for ideal gas, coarse-grained (MARTINI) water, and constrained atomic (SPC/E) water systems are discussed. We show that the measured thermal relaxation rates agree well with theoretical predictions. The influence of various parameters on the diffusion coefficient is discussed.

Journal ArticleDOI
TL;DR: The overall approach proposed in the present work is able to provide the proper accuracy to support experimental investigations even for large molecular systems of biotechnological interest in a fully automated manner, without any ad hoc scaling procedure.
Abstract: A general second-order perturbative approach based on resonance- and threshold-free computations of vibrational properties is introduced and validated. It starts from the evaluation of accurate anharmonic zero-point vibrational energies for semirigid molecular systems, in a way that avoids any singularity. Next, the degeneracy corrected second-order perturbation theory (DCPT2) is extended to a hybrid version (HDCPT2), allowing for reliable computations even in cases where the original formulation faces against severe problems, including also an automatic treatment of internal rotations through the hindered-rotor model. These approaches, in conjunction with the so-called simple perturbation theory (SPT) reformulated to treat consistently both energy minima and transition states, allow one to evaluate degeneracy-corrected partition functions further used to obtain vibrational contributions to properties like enthalpy, entropy, or specific heat. The spectroscopic accuracy of the HDCPT2 model has been also va...

Journal ArticleDOI
TL;DR: It is shown how the maximum entropy formalism provides a principled approach to enforce concordance with experimental measurements in a minimally biased way, yielding restraints that are linear functions of the target observables and specifying a straightforward scheme to determine the biasing weights.
Abstract: Historically, experimental measurements have been used to bias biomolecular simulations toward structures compatible with those observations via the addition of ad hoc restraint terms. We show how the maximum entropy formalism provides a principled approach to enforce concordance with these measurements in a minimally biased way, yielding restraints that are linear functions of the target observables and specifying a straightforward scheme to determine the biasing weights. These restraints are compared with instantaneous and ensemble-averaged harmonic restraint schemes, illustrating their similarities and limitations.

Journal ArticleDOI
TL;DR: The results support the notion that the activity of an unusually potent chloro analog likely benefits from halogen bonding with the carbonyl group of a proline residue.
Abstract: The representation of chlorine, bromine, and iodine in aryl halides has been modified in the OPLS-AA and OPLS/CM1A force fields in order to incorporate halogen bonding. The enhanced force fields, OPLS-AAx and OPLS/CM1Ax, have been tested in calculations on gas-phase complexes of halobenzenes with Lewis bases, and for free energies of hydration, densities, and heats of vaporization of halobenzenes. Comparisons with results of MP2/aug-cc-pVDZ(-PP) calculations for the complexes are included. Implementation in the MCPRO software also allowed computation of relative free energies of binding for a series of HIV reverse transcriptase inhibitors via Monte Carlo/free-energy perturbation calculations. The results support the notion that the activity of an unusually potent chloro analog likely benefits from halogen bonding with the carbonyl group of a proline residue.

Journal ArticleDOI
Oded Hod1
TL;DR: In this article, a comparative study of the nature of interlayer bonding in graphite and hexagonal boron nitride (h-BN) is presented, showing that the interactions between the partially charged atomic centers in h-BN results in vanishingly small contributions to the interlayer binding energy.
Abstract: Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice structure. While graphite has nonpolar homonuclear C–C intralayer bonds, h-BN presents highly polar B–N bonds resulting in different optimal stacking modes of the two materials in the bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other, suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences, both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation Kohn–Sham contributions are found to...

Journal ArticleDOI
TL;DR: This study presents some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size molecular systems using GPU coprocessors and multithreaded shared-memory CPUs.
Abstract: In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

Journal ArticleDOI
TL;DR: Four systems which should be included in standard portfolio of molecules to test nucleic acids force fields, namely, parallel and antiparallel stranded DNA guanine quadruplex stems, RNA quadruplex stem, and Z-DNA are analyzed.
Abstract: Refinement of empirical force fields for nucleic acids requires their extensive testing using as wide range of systems as possible However, finding unambiguous reference data is not easy In this paper, we analyze four systems which we suggest should be included in standard portfolio of molecules to test nucleic acids force fields, namely, parallel and antiparallel stranded DNA guanine quadruplex stems, RNA quadruplex stem, and Z-DNA We highlight parameters that should be monitored to assess the force field performance The work is primarily based on 84 μs of 100-250 ns trajectories analyzed in detail followed by 96 μs of additional selected back up trajectories that were monitored to verify that the results of the initial analyses are correct Four versions of the Cornell et al AMBER force field are tested, including an entirely new parmχ(OL4) variant with χ dihedral specifically reparametrized for DNA molecules containing syn nucleotides We test also different water models and ion conditions While improvement for DNA quadruplexes is visible, the force fields still do not fully represent the intricate Z-DNA backbone conformation

Journal ArticleDOI
TL;DR: Important classes of compounds that performed suboptimally with OPLS_2005 show significant improvements and the results with popular small molecule force fields-OPLS_2005, GAFF, and CHARMm-MSI are compared.
Abstract: Explicit solvent molecular dynamics free energy perturbation simulations were performed to predict absolute solvation free energies of 239 diverse small molecules. We use OPLS2.0, the next generation OPLS force field, and compare the results with popular small molecule force fields-OPLS_2005, GAFF, and CHARMm-MSI. OPLS2.0 produces the best correlation with experimental data (R(2) = 0.95, slope = 0.96) and the lowest average unsigned errors (0.7 kcal/mol). Important classes of compounds that performed suboptimally with OPLS_2005 show significant improvements.