scispace - formally typeset
Search or ask a question

Showing papers on "Spectral efficiency published in 2017"


Journal ArticleDOI
TL;DR: A spatial basis expansion model (SBEM) is built to represent the UL/DL channels with far fewer parameter dimensions, which significantly reduces the training overhead and feedback cost and enhances the spectral efficiency.
Abstract: This paper proposes a unified transmission strategy for multiuser time division duplex (TDD)/frequency division duplex (FDD) massive multiple-input–multiple-output (MIMO) systems, including uplink (UL)/downlink (DL) channel estimation and user scheduling for data transmission. With the aid of antenna array theory and array signal processing, we build a spatial basis expansion model (SBEM) to represent the UL/DL channels with far fewer parameter dimensions. Hence, both the UL and DL channel estimations of multiusers can be carried out with a small amount of training resource, which significantly reduces the training overhead and feedback cost. Meanwhile, the pilot contamination problem in the UL training is immediately relieved by exploiting the spatial information of users. To enhance the spectral efficiency, we also design a greedy user scheduling scheme during the data transmission period. Compared with existing low-rank models, the newly proposed SBEM offers an alternative for channel acquisition without the need for channel statistics and can be applied to both TDD and FDD systems. Various numerical results are provided to corroborate the proposed studies.

465 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed an approach for channel estimation that is applicable for both flat and frequency-selective fading, based on the Bussgang decomposition that reformulates the nonlinear quantizer as a linear function with identical first and second-order statistics.
Abstract: This paper considers channel estimation and system performance for the uplink of a single-cell massive multiple-input multiple-output system. Each receiver antenna of the base station is assumed to be equipped with a pair of one-bit analog-to-digital converters to quantize the real and imaginary part of the received signal. We first propose an approach for channel estimation that is applicable for both flat and frequency-selective fading, based on the Bussgang decomposition that reformulates the nonlinear quantizer as a linear function with identical first- and second-order statistics. The resulting channel estimator outperforms previously proposed approaches across all SNRs. We then derive closed-form expressions for the achievable rate in flat fading channels assuming low SNR and a large number of users for the maximal ratio and zero forcing receivers that takes channel estimation error due to both noise and one-bit quantization into account. The closed-form expressions, in turn, allow us to obtain insight into important system design issues such as optimal resource allocation, maximal sum spectral efficiency, overall energy efficiency, and number of antennas. Numerical results are presented to verify our analytical results and demonstrate the benefit of optimizing system performance accordingly.

452 citations


Proceedings ArticleDOI
25 Jun 2017
TL;DR: This paper discusses the contemporary problem of providing multiple-access (MAC) to a massive number of uncoordinated users and defines a random-access code for Ka-user Gaussian MAC to be a collection of norm-constrained vectors such that the noisy sum of any Ka of them can be decoded with a given probability of error.
Abstract: This paper discusses the contemporary problem of providing multiple-access (MAC) to a massive number of uncoordinated users. First, we define a random-access code for Ka-user Gaussian MAC to be a collection of norm-constrained vectors such that the noisy sum of any K a of them can be decoded with a given (suitably defined) probability of error. An achievability bound for such codes is proposed and compared against popular practical solutions: ALOHA, coded slotted ALOHA, CDMA, and treating interference as noise. It is found out that as the number of users increases existing solutions become vastly energy-inefficient. Second, we discuss the asymptotic (in blocklength) problem of coding for a K-user Gaussian MAC when K is proportional to blocklength and each user's payload is fixed. It is discovered that the energy-per-bit vs. spectral efficiency exhibits a rather curious tradeoff in this case.

381 citations


Journal ArticleDOI
TL;DR: A closed-form solution for fully connected OFDM-based hybrid analog/digital precoding is developed for frequency selective mmWave systems and the results indicate that the developed dynamic subarray solution outperforms the fixed hybrid subarray structures in various system and channel conditions.
Abstract: Hybrid analog/digital precoding architectures can address the tradeoff between achievable spectral efficiency and power consumption in large-scale MIMO systems. This makes them a promising candidate for millimeter wave systems, which deploy large antenna arrays at both the transmitter and the receiver to guarantee sufficient received signal power. Most prior work on hybrid precoding focused on narrowband channels and assumed fully connected hybrid architectures. Millimeter wave (mmWave) systems, though, are expected to be wideband with frequency selectivity. In this paper, a closed-form solution for fully connected OFDM-based hybrid analog/digital precoding is developed for frequency selective mmWave systems. This solution is then extended to partially connected but fixed architectures in which each RF chain is connected to a specific subset of the antennas. The derived solutions give insights into how the hybrid subarray structures should be designed. Based on this, a novel technique that dynamically constructs the hybrid subarrays knowing the long-term channel characteristics is developed. Simulation results show that the proposed hybrid precoding solutions achieve spectral efficiencies close to that obtained with fully digital architectures in wideband mmWave channels. Furthermore, the results indicate that the developed dynamic subarray solution outperforms the fixed hybrid subarray structures in various system and channel conditions.

371 citations


Journal ArticleDOI
TL;DR: An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point.
Abstract: Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave-based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem are modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and its effectiveness compared with existing methods is verified by simulations.

367 citations


Journal ArticleDOI
TL;DR: System level simulation results show that PDMA can support more simultaneous connections than that of conventional and at least improve in spectrum efficiency over orthogonal frequency division multiple access.
Abstract: In this paper, pattern division multiple access (PDMA), which is a novel nonorthogonal multiple access scheme, is proposed for fifth-generation (5G) radio networks. The PDMA pattern defines the mapping of transmitted data to a resource group that can consist of time, frequency, and spatial resources or any combination of these resources. The pattern is introduced to differentiate signals of users sharing the same resources, and the pattern is designed with disparate diversity order and sparsity so that PDMA can take the advantage of the joint design of transmitter and receiver to improve system performance while maintaining detection complexity to a reasonable level. System level simulation results show that PDMA can support $\text{six}$ times simultaneous connections than that of conventional and at least $\text{30}\%$ improvement in spectrum efficiency over orthogonal frequency division multiple access.

351 citations


Journal ArticleDOI
TL;DR: An analysis of the spectral efficiency of single-carrier and orthogonal-frequency-division-multiplexing (OFDM) transmission in massive MIMO systems that use one-bit ADCs is presented and it is concluded that wideband massive M IMO systems work well with one- bit ADCs.
Abstract: Analog-to-digital converters (ADCs) stand for a significant part of the total power consumption in a massive multiple-input multiple-output (MIMO) base station. One-bit ADCs are one way to reduce power consumption. This paper presents an analysis of the spectral efficiency of single-carrier and orthogonal-frequency-division-multiplexing (OFDM) transmission in massive MIMO systems that use one-bit ADCs. A closed-form achievable rate, i.e., a lower bound on capacity, is derived for a wideband system with a large number of channel taps that employ low-complexity linear channel estimation and symbol detection. Quantization results in two types of error in the symbol detection. The circularly symmetric error becomes Gaussian in massive MIMO and vanishes as the number of antennas grows. The amplitude distortion, which severely degrades the performance of OFDM, is caused by variations between symbol durations in received interference energy. As the number of channel taps grows, the amplitude distortion vanishes and OFDM has the same performance as single-carrier transmission. A main conclusion of this paper is that wideband massive MIMO systems work well with one-bit ADCs.

334 citations


Journal ArticleDOI
TL;DR: A radar information metric, the estimation rate, that allows the radar user to be considered in a multiple-access channel enabling performance bounds for joint radar-communications coexistence to be derived is introduced.
Abstract: In this paper, we introduce a radar information metric, the estimation rate, that allows the radar user to be considered in a multiple-access channel enabling performance bounds for joint radar-communications coexistence to be derived. Traditionally, the two systems were isolated in one or multiple dimensions. We categorize new attempts at spectrum-space-time convergence as either coexistence, cooperation, or co-design. The meaning and interpretation of the estimation rate and what it means to alter it are discussed. Additionally, we introduce and elaborate on the concept of “not all bits are equal,” which states that communications rate bits and estimation rate bits do not have equal value. Finally, results for joint radar-communications information bounds and their accompanying weighted spectral efficiency measures are presented.

322 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a unified heuristic design for two different hybrid beamforming structures, the fully connected and the partially connected structures, to maximize the overall spectral efficiency of an mmWave MIMO system.
Abstract: Hybrid analog and digital beamforming is a promising candidate for large-scale millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems because of its ability to significantly reduce the hardware complexity of the conventional fully digital beamforming schemes while being capable of approaching the performance of fully digital schemes. Most of the prior work on hybrid beamforming considers frequency-flat channels. However, broadband mmWave systems are frequency-selective. In broadband systems, it is desirable to design common analog beamformer for the entire band while employing different digital (baseband) beamformers in different frequency sub-bands. This paper considers the hybrid beamforming design for systems with orthogonal frequency division multiplexing modulation. First, for a single-user MIMO (SU-MIMO) system where the hybrid beamforming architecture is employed at both transmitter and receiver, we show that hybrid beamforming with a small number of radio frequency (RF) chains can asymptotically approach the performance of fully digital beamforming for a sufficiently large number of transceiver antennas due to the sparse nature of the mmWave channels. For systems with a practical number of antennas, we then propose a unified heuristic design for two different hybrid beamforming structures, the fully connected and the partially connected structures, to maximize the overall spectral efficiency of an mmWave MIMO system. Numerical results are provided to show that the proposed algorithm outperforms the existing hybrid beamforming methods, and for the fully connected architecture, the proposed algorithm can achieve spectral efficiency very close to that of the optimal fully digital beamforming but with much fewer RF chains. Second, for the multiuser multiple-input single-output case, we propose a heuristic hybrid percoding design to maximize the weighted sum rate in the downlink and show numerically that the proposed algorithm with practical number of RF chains can already approach the performance of fully digital beamforming.

284 citations


Posted Content
TL;DR: In this article, the joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition.
Abstract: Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and the effectiveness of the proposed scheme compared with existing methods is verified by simulations.

280 citations


Journal ArticleDOI
TL;DR: This correspondence studies the benefit of NOMA in enhancing energy efficiency for a multiuser downlink transmission and proposes an EE-optimal power allocation strategy that maximizes EE.
Abstract: Non-orthogonal multiple access (NOMA) is considered as a promising technology for improving the spectral efficiency in fifth-generation systems. In this correspondence, we study the benefit of NOMA in enhancing energy efficiency (EE) for a multiuser downlink transmission, wherein the EE is defined as the ratio of the achievable sum rate of the users to the total power consumption. Our goal is to maximize EE subject to a minimum required data rate for each user, which leads to a nonconvex fractional programming problem. To solve it, we first establish the feasible range of the transmitting power that is able to support each user's data rate requirement. Then, we propose an EE-optimal power allocation strategy that maximizes EE. Our numerical results show that NOMA has superior EE performance in comparison with conventional orthogonal multiple access.

Journal ArticleDOI
TL;DR: A survey of the recent development of advanced techniques for spectrum sharing, in particular, cognitive radio, device-todevice communication, in-band full-duplex communication, non-orthogonal multiple access, and Long Term Evolution on unlicensed spectrum is provided.
Abstract: Spectrum efficiency is one of the key performance metrics in 5G communication networks. To enhance spectrum efficiency, advanced spectrum sharing techniques are normally used. In this article, we provide a survey of the recent development of advanced techniques for spectrum sharing. In particular, we elaborate cognitive radio, device-todevice communication, in-band full-duplex communication, non-orthogonal multiple access, and Long Term Evolution on unlicensed spectrum. For each technique, we present the basic principle and research methodology of the state of the art. By considering various promising evolutions in 5G networks, we emphasize challenges to deploy each technique. Finally, we discuss the integration issue of multiple spectrum sharing techniques and identify potential challenges.

Book ChapterDOI
01 Jan 2017
TL;DR: E-UTRAN access technology is also referred to long-term evolution (LTE) with its spectral efficiency increased 150 times as compared to the first-generation analog access technology.
Abstract: Mobile wireless network has evolved from the first generation of analog communications to the fourth-generation evolved universal terrestrial radio access network (E-UTRAN). E-UTRAN access technology is also referred to long-term evolution (LTE) with its spectral efficiency increased 150 times as compared to the first-generation analog access technology.

Journal ArticleDOI
TL;DR: This paper investigates energy efficiency improvement for a downlink NOMA single-cell network by considering imperfect CSI, and proposes an iterative algorithm for user scheduling and power allocation to maximize the system energy efficiency.
Abstract: Non-orthogonal multiple access (NOMA) exploits successive interference cancellation technique at the receivers to improve the spectral efficiency. By using this technique, multiple users can be multiplexed on the same subchannel to achieve high sum rate. Most previous research works on NOMA systems assume perfect channel state information (CSI). However, in this paper, we investigate energy efficiency improvement for a downlink NOMA single-cell network by considering imperfect CSI. The energy efficient resource scheduling problem is formulated as a non-convex optimization problem with the constraints of outage probability limit, the maximum power of the system, the minimum user data rate, and the maximum number of multiplexed users sharing the same subchannel. Different from previous works, the maximum number of multiplexed users can be greater than two, and the imperfect CSI is first studied for resource allocation in NOMA. To efficiently solve this problem, the probabilistic mixed problem is first transformed into a non-probabilistic problem. An iterative algorithm for user scheduling and power allocation is proposed to maximize the system energy efficiency. The optimal user scheduling based on exhaustive search serves as a system performance benchmark, but it has high computational complexity. To balance the system performance and the computational complexity, a new suboptimal user scheduling scheme is proposed to schedule users on different subchannels. Based on the user scheduling scheme, the optimal power allocation expression is derived by the Lagrange approach. By transforming the fractional-form problem into an equivalent subtractive-form optimization problem, an iterative power allocation algorithm is proposed to maximize the system energy efficiency. Simulation results demonstrate that the proposed user scheduling algorithm closely attains the optimal performance.

Journal ArticleDOI
TL;DR: This paper considers a NOMA-based relaying networks over Nakagami-$m$ fading channels, where the base station communicates with multiple mobile users simultaneously through the help of an amplify-and-forward (AF) relay and reports to outperform conventional OMA and provide better spectral efficiency and user fairness.
Abstract: Nonorthogonal multiple access (NOMA), which can improve the spectrum efficiency and system throughput compared with conventional orthogonal multiple access (OMA), has been regarded as a promising technique for the fifth-generation (5G) mobile communication network. In this paper, we consider a NOMA-based relaying networks over Nakagami- $m$ fading channels, where the base station communicates with multiple mobile users simultaneously through the help of an amplify-and-forward (AF) relay. First, we study the system outage behavior, and closed-form expressions for the exact outage probability and simple bounds of the outage probability are obtained, respectively. The analytical results are further evaluated in the high-signal-to-noise-ratio (SNR) regime to explicitly characterize the diversity order of the network. Next, the ergodic sum rate achieved by the network is investigated, and expressions for the lower and upper bounds of the ergodic sum rate are derived. Finally, numerical examples are conducted to confirm the validity of our analysis and show a comparison of NOMA against conventional OMA networks. NOMA is reported to outperform conventional OMA and provide better spectral efficiency and user fairness.

Journal ArticleDOI
TL;DR: Stochastic geometry approach is used to model a dense wireless system, that supports NOMA on both uplink and downlink, based on which analytical results are derived either in pseudo-closed forms or succinct closed forms and are further validated by simulations.
Abstract: To address the ever increasing high data rate and connectivity requirements in the next generation 5G wireless network, novel radio access technologies (RATs) are actively explored to enhance the system spectral efficiency and connectivity. As a promising RAT for 5G cellular networks, non-orthogonal multiple access (NOMA) has attracted extensive research attentions. Compared with the orthogonal multiple access (OMA) that has been widely applied in existing wireless communication systems, NOMA possesses the potential to further improve the system spectral efficiency and connectivity capability. This paper develops analytical frameworks for NOMA downlink and uplink multi-cell wireless systems to evaluate the system outage probability and average achievable rate. In the downlink NOMA system, two different NOMA group pairing schemes are considered, based on which theoretical results on outage and achievable data rates are derived. In the uplink NOMA, revised back-off power control scheme is applied, and outage probability and per UE average achievable rate are derived. As wireless networks turn into more and more densely deployed, inter-cell interference has become a dominant capacity limiting factor but has not been addressed in most of the existing NOMA studies. In this paper, a stochastic geometry approach is used to model a dense wireless system, that supports NOMA on both uplink and downlink, based on which analytical results are derived either in pseudo-closed forms or succinct closed forms and are further validated by simulations. Numerical results demonstrate that NOMA can bring considerable system-wide performance gain compared with OMA on both uplink and downlink when properly designed.

Posted Content
TL;DR: It is shown that hybrid beamforming with a small number of radio frequency (RF) chains can asymptotically approach the performance of fully digital beamforming for a sufficiently large number of transceiver antennas due to the sparse nature of the mmWave channels.
Abstract: Hybrid analog and digital beamforming is a promising candidate for large-scale mmWave MIMO systems because of its ability to significantly reduce the hardware complexity of the conventional fully-digital beamforming schemes while being capable of approaching the performance of fully-digital schemes. Most of the prior work on hybrid beamforming considers narrowband channels. However, broadband systems such as mmWave systems are frequency-selective. In broadband systems, it is desirable to design common analog beamformer for the entire band while employing different digital beamformers in different frequency sub-bands. This paper considers hybrid beamforming design for systems with OFDM modulation. First, for a SU-MIMO system where the hybrid beamforming architecture is employed at both transmitter and receiver, we show that hybrid beamforming with a small number of RF chains can asymptotically approach the performance of fully-digital beamforming for a sufficiently large number of transceiver antennas due to the sparse nature of the mmWave channels. For systems with a practical number of antennas, we then propose a unified heuristic design for two different hybrid beamforming structures, the fully-connected and the partially-connected structures, to maximize the overall spectral efficiency of a mmWave MIMO system. Numerical results are provided to show that the proposed algorithm outperforms the existing hybrid beamforming methods and for the fully-connected architecture the proposed algorithm can achieve spectral efficiency very close to that of the optimal fully-digital beamforming but with much fewer RF chains. Second, for the MU-MISO case, we propose a heuristic hybrid percoding design to maximize the weighted sum rate in the downlink and show numerically that the proposed algorithm with practical number of RF chains can already approach the performance of fully-digital beamforming.

Journal ArticleDOI
TL;DR: A high-throughput communication approach using the orbital angular momentum (OAM) of acoustic vortex beams with one order enhancement of the data transmission rate at a single frequency is demonstrated.
Abstract: Long-range acoustic communication is crucial to underwater applications such as collection of scientific data from benthic stations, ocean geology, and remote control of off-shore industrial activities. However, the transmission rate of acoustic communication is always limited by the narrow-frequency bandwidth of the acoustic waves because of the large attenuation for high-frequency sound in water. Here, we demonstrate a high-throughput communication approach using the orbital angular momentum (OAM) of acoustic vortex beams with one order enhancement of the data transmission rate at a single frequency. The topological charges of OAM provide intrinsically orthogonal channels, offering a unique ability to multiplex data transmission within a single acoustic beam generated by a transducer array, drastically increasing the information channels and capacity of acoustic communication. A high spectral efficiency of 8.0 ± 0.4 (bit/s)/Hz in acoustic communication has been achieved using topological charges between -4 and +4 without applying other communication modulation techniques. Such OAM is a completely independent degree of freedom which can be readily integrated with other state-of-the-art communication modulation techniques like quadrature amplitude modulation (QAM) and phase-shift keying (PSK). Information multiplexing through OAM opens a dimension for acoustic communication, providing a data transmission rate that is critical for underwater applications.

Journal ArticleDOI
TL;DR: The proposed schemes successfully deal with inter-cell interference, and increase the cell-edge users’ throughput, which in turn improves user fairness, which makes them suitable for 5G networks where massive connectivity and higher spectral efficiency are required.
Abstract: In this letter, two novel coordinated beamforming techniques are developed to enhance the performance of non-orthogonal multiple access combined with multiple-input multiple-output communication in the presence of inter-cell interference. The proposed schemes successfully deal with inter-cell interference, and increase the cell-edge users’ throughput, which in turn improves user fairness. In addition, they increase the number of served users, which makes them suitable for 5G networks where massive connectivity and higher spectral efficiency are required. Numerical results confirm the effectiveness of the proposed algorithms.

Journal ArticleDOI
TL;DR: This work proposes a comparison of several 5G waveform candidates (OFDM, UFMC, FBMC and GFDM) under a common framework, and assess spectral efficiency, power spectral density, peak-to-average power ratio and robustness to asynchronous multi-user uplink transmission.
Abstract: 5G will have to cope with a high degree of heterogeneity in terms of services and requirements. Among these latter, the flexible and efficient use of non-contiguous unused spectrum for different network deployment scenarios is considered a key challenge for 5G systems. To maximize spectrum efficiency, the 5G air interface technology will also need to be flexible and capable of mapping various services to the best suitable combinations of frequency and radio resources. In this work, we propose a comparison of several 5G waveform candidates (OFDM, UFMC, FBMC and GFDM) under a common framework. We assess spectral efficiency, power spectral density, peak-to-average power ratio and robustness to asynchronous multi-user uplink transmission. Moreover, we evaluate and compare the complexity of the different waveforms. In addition to the complexity analysis, in this work, we also demonstrate the suitability of FBMC for specific 5G use cases via two experimental implementations. The benefits of these new waveforms for the foreseen 5G use cases are clearly highlighted on representative criteria and experiments.

Posted Content
TL;DR: In this article, the authors considered the cell-free massive multiple-input multiple-output (MIMO) downlink downlink, where a very large number of distributed multiple-antenna access points (APs) serve many single antenna users in the same time-frequency resource.
Abstract: We consider the cell-free massive multiple-input multiple-output (MIMO) downlink, where a very large number of distributed multiple-antenna access points (APs) serve many single-antenna users in the same time-frequency resource. A simple (distributed) conjugate beamforming scheme is applied at each AP via the use of local channel state information (CSI). This CSI is acquired through time-division duplex operation and the reception of uplink training signals transmitted by the users. We derive a closed-form expression for the spectral efficiency taking into account the effects of channel estimation errors and power control. This closed-form result enables us to analyze the effects of backhaul power consumption, the number of APs, and the number of antennas per AP on the total energy efficiency, as well as, to design an optimal power allocation algorithm. The optimal power allocation algorithm aims at maximizing the total energy efficiency, subject to a per-user spectral efficiency constraint and a per-AP power constraint. Compared with the equal power control, our proposed power allocation scheme can double the total energy efficiency. Furthermore, we propose AP selections schemes, in which each user chooses a subset of APs, to reduce the power consumption caused by the backhaul links. With our proposed AP selection schemes, the total energy efficiency increases significantly, especially for large numbers of APs. Moreover, under a requirement of good quality-of-service for all users, cell-free massive MIMO outperforms the colocated counterpart in terms of energy efficiency.

Journal ArticleDOI
TL;DR: A new, highly reconfigurable system architecture for 5G cellular user equipment, namely distributed phased arrays based MIMO (DPA-MIMO) is proposed and the link budget calculation and data throughput numerical results are presented for the evaluation of the proposed architecture.
Abstract: Research and development on the next generation wireless systems, namely 5G, has experienced explosive growth in recent years. In the physical layer, the massive multiple-input-multiple-output (MIMO) technique and the use of high GHz frequency bands are two promising trends for adoption. Millimeter-wave (mmWave) bands, such as 28, 38, 64, and 71 GHz, which were previously considered not suitable for commercial cellular networks, will play an important role in 5G. Currently, most 5G research deals with the algorithms and implementations of modulation and coding schemes, new spatial signal processing technologies, new spectrum opportunities, channel modeling, 5G proof of concept systems, and other system-level enabling technologies. In this paper, we first investigate the contemporary wireless user equipment (UE) hardware design, and unveil the critical 5G UE hardware design constraints on circuits and systems. On top of the said investigation and design tradeoff analysis, a new, highly reconfigurable system architecture for 5G cellular user equipment, namely distributed phased arrays based MIMO (DPA-MIMO) is proposed. Finally, the link budget calculation and data throughput numerical results are presented for the evaluation of the proposed architecture.

Journal ArticleDOI
TL;DR: A detailed survey on device-to-device (D2D) communications has been offered, along with the challenges which exist for D2D (like resource allocation, security, interference management etc.) to become a successful paradigm of wireless networks.

Journal ArticleDOI
TL;DR: A scalable and flexible massive MIMO precoding scheme by exploiting the null-space of user signals is proposed, capable to effectively alleviate the interference to victim users and support high QoS as well as spectral efficiency.
Abstract: Scalability and flexibility are widely considered as two major design goals for 5G networks. Aiming at these goals, this article first identifies a promising architecture based on the heterogeneous cloud radio access network (H-CRAN), reviews the challenges in MIMO precoding for H-CRAN, and then proposes a scalable and flexible massive MIMO precoding scheme by exploiting the null-space of user signals. Specifically, the system can accomplish effective radio resource management and flexible spatial coordination by distinguishing the intended and victim users' CSI, and avoid the interference by precoding within the null-space for the CSI of victim users. Simulation results indicate that the proposed scheme is capable to effectively alleviate the interference to victim users and support high QoS as well as spectral efficiency.

Journal ArticleDOI
TL;DR: This paper investigates joint RF-baseband hybrid precoding for the downlink of multiuser multiantenna mmWave systems with a limited number of RF chains and proposes efficient methods to address the JWSPD problems and jointly optimize the RF and baseband precoders under the two performance measures.
Abstract: In millimeter-wave (mmWave) systems, antenna architecture limitations make it difficult to apply conventional fully digital precoding techniques but call for low-cost analog radio frequency (RF) and digital baseband hybrid precoding methods. This paper investigates joint RF-baseband hybrid precoding for the downlink of multiuser multiantenna mmWave systems with a limited number of RF chains. Two performance measures, maximizing the spectral efficiency and the energy efficiency of the system, are considered. We propose a codebook-based RF precoding design and obtain the channel state information via a beam sweep procedure. Via the codebook-based design, the original system is transformed into a virtual multiuser downlink system with the RF chain constraint. Consequently, we are able to simplify the complicated hybrid precoding optimization problems to joint codeword selection and precoder design (JWSPD) problems. Then, we propose efficient methods to address the JWSPD problems and jointly optimize the RF and baseband precoders under the two performance measures. Finally, extensive numerical results are provided to validate the effectiveness of the proposed hybrid precoders.

Journal ArticleDOI
TL;DR: A field trial in time division duplex downlink conducted on a configurable test bed in a real-world environment for the performance evaluations of orthogonal frequency-division multiplexing (OFDM)-based 5G waveform candidates suggests that f-OFDM outperforms CP- OFDM and W-OF DM in terms of both the spectrum efficiency and robustness in a high SNR regime.
Abstract: Service diversity is expected in the upcoming fifth-generation (5G) cellular networks, which poses great challenges to the underlying waveforms to accommodate heterogeneous service requirements in a flexible way. By dividing the bandwidth into several subbands, each having a different numerology, this paper reports a field trial in time division duplex downlink conducted on a configurable test bed in a real-world environment for the performance evaluations of orthogonal frequency-division multiplexing (OFDM)-based 5G waveform candidates, i.e., cyclically prefixed OFDM (CP-OFDM), windowing OFDM (W-OFDM), and filtered OFDM (f-OFDM), in the presence of mixed numerologies. Field trial results confirm the feasibility of mixed numerologies and reveal the impact of several important system parameters, e.g., guard bandwidth, data bandwidth, signal-to-noise ratio (SNR), and transmit power. The results also suggest that f-OFDM outperforms CP-OFDM and W-OFDM in terms of both the spectrum efficiency and robustness in a high SNR regime, and the gain increases with a higher inter-numerology out-of-band interference. In some specific scenarios, ideal spectrum utilization can be realized by f-OFDM which completely removes the guard band.

Journal ArticleDOI
TL;DR: The achievable rate region of wirelessly powered two-way communication with a fixed relay is derived and the gain is precisely quantified, and it is possible to quantify the relative advantage of spending energy on moving versus on transmission in wirelesslypowered two- way communication.
Abstract: While two-way communication can improve the spectral efficiency of wireless networks, distances from the relay to the two users are usually asymmetric, leading to excessive wireless energy at the nearby user. To exploit the excessive energy, energy harvesting at user terminals is a viable option. Unfortunately, the exact gain brought by wireless power transfer (WPT) in two-way communication is currently unknown. To fill this gap, in this paper, the achievable rate region of wirelessly powered two-way communication with a fixed relay is derived. Not only this newly established result is shown to enclose the existing achievable rate region of two-way relay channel without energy harvesting but also the gain is precisely quantified. On the other hand, it is well-known that a major obstacle to WPT is the path-loss. By endowing the relay with mobility, the distances between the relay and users can be varied, thus providing a potential solution to combat pathloss at the expense of energy for transmission. To characterize the consequence brought by such a scheme, a pair of inner and outer bounds to the achievable rate region of wirelessly powered two-way communication under a mobile relay is further derived. By comparing the exact achievable rate region for the fixed relay case and the achievable rate bounds for the mobile relay case, it is possible to quantify the relative advantage of spending energy on moving versus on transmission in wirelessly powered two-way communication.

Journal ArticleDOI
TL;DR: This work intrinsically amalgamate SM and NOMA to conceive a new system component exhibiting distinct benefits in the V2V scenarios considered, and investigates the bit error ratio performance of N OMA-SM via Monte Carlo simulations.
Abstract: At the time of writing, vehicle-to-vehicle (V2V) communication is enjoying substantial research attention as a benefit of its compelling applications. However, the ever-increasing tele-traffic is expected to result in overcrowding of the available band. As a first resort, multiple input multiple output (MIMO) can be utilized to enhance the attainable bandwidth efficiency or link reliability. However, in hostile V2V wireless propagation environments, the achievable multiple-antenna gain is eroded by the channel correlation. As a promising MIMO technique, spatial modulation (SM) only activates a single transmit antenna (TA) in any symbol interval and, hence, completely avoids the inter-antenna interference, hence showing robustness against channel correlation. As a further powerful solution, non-orthogonal multiple access (NOMA) has been proposed for improving the bandwidth efficiency. Inspired by the robustness of SM against channel correlation and the benefits of NOMA, we intrinsically amalgamate them into NOMA-SM in order to deal with the deleterious effects of wireless V2V environments as well as to support improved bandwidth efficiency. Moreover, the bandwidth efficiency of NOMA-SM is further boosted with the aid of a massive TA configuration. Specifically, a spatio-temporally correlated Rician channel is considered for a V2V scenario. We investigate the bit error ratio performance of NOMA-SM via Monte Carlo simulations, where the impact of the Rician $K$ -factor, spatial correlation of the antenna array, time-varying effect of the V2V channel, and the power allocation factor is discussed. Furthermore, we also analyze the capacity of NOMA-SM. By analyzing the capacity and deriving closed-form upper bounds on the capacity, a pair of power allocation optimization schemes are formulated. The optimal solutions are demonstrated to be achievable with the aid of our proposed algorithm. Again, instead of simply invoking a pair of popular techniques, we intrinsically amalgamate SM and NOMA to conceive a new system component exhibiting distinct benefits in the V2V scenarios considered.

Proceedings ArticleDOI
08 May 2017
TL;DR: A novel approach is proposed to embed information into radar emissions while preserving constant envelope waveforms with good spectral containment, and enables direct control of the degree of RSM by trading off bit error rate (BER) and/or data throughput.
Abstract: Due to constantly increasing demand from commercial communications, defense applications are losing spectrum while still striving to maintain legacy capabilities, not to mention the need for enhanced performance. Consequently, ongoing research is focused on developing multi-function methods to share spectrum between radar and military communication. One approach is to incorporate information-bearing communication symbols into the emitted radar waveforms. However, varying the radar waveform during a coherent processing interval (CPI) causes range sidelobe modulation (RSM) that results in increased residual clutter in the range-Doppler response, thus leading to reduced target visibility. Here a novel approach is proposed to embed information into radar emissions while preserving constant envelope waveforms with good spectral containment. Information sequences are implemented using continuous phase modulation (CPM) and phase-attached to a polyphase-coded frequency-modulated (PCFM) radar waveform, the implementation of which is also derived from CPM. The resulting communication-embedded radar waveforms therefore maintain high power and spectral efficiency. More importantly, the adjustable parameterization of the proposed approach enables direct control of the degree of RSM by trading off bit error rate (BER) and/or data throughput.

Journal ArticleDOI
TL;DR: This review paper highlights recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications and discusses different technical challenges as well as potential techniques to mitigate such degrading effects.
Abstract: There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'.