scispace - formally typeset
Search or ask a question

Showing papers on "Thalamus published in 2008"


Journal ArticleDOI
TL;DR: The locus coeruleus is the major noradrenergic nucleus of the brain, giving rise to fibres innervating extensive areas throughout the neuraxis, resulting in complex patterns of neuronal activity throughout the brain.
Abstract: The locus coeruleus (LC) is the major noradrenergic nucleus of the brain, giving rise to fibres innervating extensive areas throughout the neuraxis. Recent advances in neuroscience have resulted in the unravelling of the neuronal circuits controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. The LC is a major wakefulness-promoting nucleus, resulting from dense excitatory projections to the majority of the cerebral cortex, cholinergic neurones of the basal forebrain, cortically-projecting neurones of the thalamus, serotoninergic neurones of the dorsal raphe and cholinergic neurones of the pedunculopontine and laterodorsal tegmental nucleus, and substantial inhibitory projections to sleep-promoting GABAergic neurones of the basal forebrain and ventrolateral preoptic area. Activation of the LC thus results in the enhancement of alertness through the innervation of these varied nuclei. The importance of the LC in controlling autonomic function results from both direct projections to the spinal cord and projections to autonomic nuclei including the dorsal motor nucleus of the vagus, the nucleus ambiguus, the rostroventrolateral medulla, the Edinger-Westphal nucleus, the caudal raphe, the salivatory nuclei, the paraventricular nucleus, and the amygdala. LC activation produces an increase in sympathetic activity and a decrease in parasympathetic activity via these projections. Alterations in LC activity therefore result in complex patterns of neuronal activity throughout the brain, observed as changes in measures of arousal and autonomic function.

610 citations


Journal ArticleDOI
20 Nov 2008-Nature
TL;DR: It is shown, by recording neurons in attending macaque monkeys, that attention modulates visual signals before they even reach cortex by increasing responses of both magnocellular and parvocellular neurons in the first relay between retina and cortex, the lateral geniculate nucleus (LGN).
Abstract: The massive visual input from the eye to the brain requires selective processing of some visual information at the expense of other information, a process referred to as visual attention. Increases in the responses of visual neurons with attention have been extensively studied along the visual processing streams in monkey cerebral cortex, from primary visual areas to parietal and frontal cortex. Here we show, by recording neurons in attending macaque monkeys (Macaca mulatta), that attention modulates visual signals before they even reach cortex by increasing responses of both magnocellular and parvocellular neurons in the first relay between retina and cortex, the lateral geniculate nucleus (LGN). At the same time, attention decreases neuronal responses in the adjacent thalamic reticular nucleus (TRN). Crick argued for such modulation of the LGN by observing that it is inhibited by the TRN, and suggested that "if the thalamus is the gateway to the cortex, the reticular complex might be described as the guardian of the gateway", a reciprocal relationship we now show to be more than just hypothesis. The reciprocal modulation in LGN and TRN appears only during the initial visual response, but the modulation of LGN reappears later in the response, suggesting separate early and late sources of attentional modulation in LGN.

462 citations


Journal ArticleDOI
TL;DR: The evidence that implicates electrophysiologic changes (including altered discharge rates, increased incidence of burst firing, interneuronal synchrony, oscillatory activity, and altered sensorimotor processing) in basal ganglia, thalamus, and cortex, in parkinsonism is discussed.

449 citations


Journal ArticleDOI
TL;DR: The thalamus was partitioned into nuclear groups that correspond well with postmortem human histology and connectional anatomy inferred from nonhuman primates and structure/function correspondence in resting-state activity was strongest between each cerebral hemisphere and its ipsilateralThalamus.
Abstract: The brain is active even in the absence of explicit stimuli or overt responses. This activity is highly correlated within specific networks of the cerebral cortex when assessed with resting-state functional magnetic resonance imaging (fMRI) blood oxygen level–dependent (BOLD) imaging. The role of the thalamus in this intrinsic activity is unknown despite its critical role in the function of the cerebral cortex. Here we mapped correlations in resting-state activity between the human thalamus and the cerebral cortex in adult humans using fMRI BOLD imaging. Based on this functional measure of intrinsic brain activity we partitioned the thalamus into nuclear groups that correspond well with postmortem human histology and connectional anatomy inferred from nonhuman primates. This structure/function correspondence in resting-state activity was strongest between each cerebral hemisphere and its ipsilateral thalamus. However, each hemisphere was also strongly correlated with the contralateral thalamus, a pattern that is not attributable to known thalamocortical monosynaptic connections. These results extend our understanding of the intrinsic network organization of the human brain to the thalamus and highlight the potential of resting-state fMRI BOLD imaging to elucidate thalamocortical relationships.

410 citations


Journal ArticleDOI
TL;DR: Harmaline causes enhanced neuronal synchrony and rhythmicity in the inferior olive; this animal model, although as yet unproven, is the most popular one for essential tremor (ET).
Abstract: This article is devoted to animal models of tremors that emerge from lesions in the Guillain-Mollaret triangle. Cerebellar intention tremor is caused by lesions in the brachium conjunctivum or in the interpositus nucleus, possibly in combination with damage to the dentate nucleus. Impaired feed-forward motor control delays the braking of rapid movements, resulting in target overshoot and subsequent oscillation. Transcortical and transcerebellar sensorimotor loops undergo oscillation at a frequency that depends on the mechanical properties of the limb and the length of the sensorimotor loop (mechanical reflex oscillation). The crescendo quality of intention tremor may be a result of amplification of tremor in reverberating brain stem-cerebellar or thalamocortical loops. So-called rubral or midbrain tremor is caused by a combination of damage to the brachium conjunctivum and nigrostriatal pathways in the vicinity of the red nucleus. Secondary compensatory changes in the motor system are probably involved because midbrain tremor in people usually begins weeks or months after a midbrain stroke or trauma. Harmaline causes enhanced neuronal synchrony and rhythmicity in the inferior olive; this animal model, although as yet unproven, is the most popular one for essential tremor (ET). Additional studies in laboratory animals are needed to define the seemingly universal involvement of the cerebellum and ventrolateral thalamus (ventralis intermedius [Vim]) in virtually all human tremor disorders.

385 citations


Journal ArticleDOI
TL;DR: This review focuses on the contributions of the central thalamus to normal mechanisms of arousal regulation and to neurological disorders of consciousness and a model accounting for present therapeutic strategies is proposed.
Abstract: This review focuses on the contributions of the central thalamus to normal mechanisms of arousal regulation and to neurological disorders of consciousness. Forebrain arousal is regulated by ascending influences from brainstem/basal forebrain neuronal populations ("arousal systems") and control signals descending from frontal cortical systems. These subcortical and cortical systems have converging projections to the central thalamus that emphasize their role in maintaining organized behavior during wakefulness. Central thalamic neurons appear to be specialized both anatomically and physiologically to support distributed network activity that maintains neuronal firing patterns across long-range cortico-cortical pathways and within cortico-striatopallidal-thalamocortical loop connections. Recruitment of central thalamic neurons occurs in response to increasing cognitive demand, stress, fatigue, and other perturbations that reduce behavioral performance. In addition, the central thalamus receives projections from brainstem pathways evolved to rapidly generate brief shifts of arousal associated with the appearance of salient stimuli across different sensory modalities. Through activation of the central thalamus, neurons across the cerebral cortex and striatum can be depolarized and their activity patterns selectively gated by descending or ascending signals related to premotor attention and alerting stimuli. Direct injury to the central thalamus or prominent deafferentation of these neurons as a result of complex, multifocal, brain insults are both associated with severe impairment of forebrain functional integration and arousal regulation. Interventions targeting neurons within the central thalamus may lead to rational therapeutic approaches to the treatment of impaired arousal regulation following nonprogressive brain injuries. A model accounting for present therapeutic strategies is proposed.

369 citations


Journal ArticleDOI
TL;DR: It is found that hippocampal atrophy is specifically related to cingulum bundle disruption, which is in turn highly correlated to hypometabolism of the posterior cingulate cortex but also of the middle cingulates gyrus, thalamus, mammillary bodies, parahippocampal gyrus and hippocampus, as well as the right temporoparietal associative cortex.
Abstract: In early Alzheimer's disease (AD), the hippocampal region is the area most severely affected by cellular and structural alterations, yet glucose hypometabolism predominates in the posterior association cortex and posterior cingulate gyrus. One prevalent hypothesis to account for this discrepancy is that posterior cingulate hypometabolism results from disconnection from the hippocampus through disruption of the cingulum bundle. However, only partial and indirect evidence currently supports this hypothesis. Thus, using structural magnetic resonance imaging and 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography in 18 patients with early AD, we assessed the relationships between hippocampal atrophy, white matter integrity, and gray matter metabolism by means of a whole-brain voxel-based correlative approach. We found that hippocampal atrophy is specifically related to cingulum bundle disruption, which is in turn highly correlated to hypometabolism of the posterior cingulate cortex but also of the middle cingulate gyrus, thalamus, mammillary bodies, parahippocampal gyrus, and hippocampus (all part of Papez's circuit), as well as the right temporoparietal associative cortex. These results provide the first direct evidence supporting the disconnection hypothesis as a major factor contributing to the early posterior hypometabolism in AD. Disruption of the cingulum bundle also appears to relate to hypometabolism in a large connected network over and above the posterior cingulate cortex, encompassing the whole memory circuit of Papez (consistent with the key location of this white matter tract within this loop) and also, but indirectly, the right posterior association cortex.

362 citations


Journal ArticleDOI
TL;DR: The rate at which dendritic spines were lost and gained increased threefold after a small retinal lesion, leading to an almost complete replacement of spines in the deafferented cortex within 2 months.
Abstract: The cerebral cortex has the ability to adapt to altered sensory inputs. In the visual cortex, a small lesion to the retina causes the deprived cortical region to become responsive to adjacent parts of the visual field. This extensive topographic remapping is assumed to be mediated by the rewiring of intracortical connections, but the dynamics of this reorganization process remain unknown. We used repeated intrinsic signal and two-photon imaging to monitor functional and structural alterations in adult mouse visual cortex over a period of months following a retinal lesion. The rate at which dendritic spines were lost and gained increased threefold after a small retinal lesion, leading to an almost complete replacement of spines in the deafferented cortex within 2 months. Because this massive remodeling of synaptic structures did not occur when all visual input was removed, it likely reflects the activity-dependent establishment of new cortical circuits that serve the recovery of visual responses.

317 citations


Journal ArticleDOI
TL;DR: The selection of Hodgkin–Huxley type models of cerebral cortex and thalamic neurons for network simulations constitutes a necessary step towards building network simulations of the thalamocortical system with realistic cellular dynamical properties.
Abstract: We review here the development of Hodgkin–Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are “fast spiking”, “regular spiking”, “intrinsically bursting” and “low-threshold spike” cells. For each class, we fit “minimal” HH type models to experimental data. The models contain the minimal set of voltage-dependent currents to account for the data. To obtain models as generic as possible, we used data from different preparations in vivo and in vitro, such as rat somatosensory cortex and thalamus, guinea-pig visual and frontal cortex, ferret visual cortex, cat visual cortex and cat association cortex. For two cell classes, we used automatic fitting procedures applied to several cells, which revealed substantial cell-to-cell variability within each class. The selection of such cellular models constitutes a necessary step towards building network simulations of the thalamocortical system with realistic cellular dynamical properties.

287 citations


Journal ArticleDOI
TL;DR: PV/PT receive a vast array of afferents from the brainstem, hypothalamus, and limbic forebrain, related to arousal and attentive states of the animal, and would appear to channel that information to structures of the limbicForebrain in the selection of appropriate responses to changing environmental conditions.
Abstract: The paraventricular (PV) and paratenial (PT) nuclei are prominent cell groups of the midline thalamus. To our knowledge, only a single early report has examined PV projections and no previous study has comprehensively analyzed PT projections. By using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, and the retrograde tracer, FluoroGold, we examined the efferent projections of PV and PT. We showed that the output of PV is virtually directed to a discrete set of limbic forebrain structures, including ‘limbic’ regions of the cortex. These include the infralimbic, prelimbic, dorsal agranular insular, and entorhinal cortices, the ventral subiculum of the hippocampus, dorsal tenia tecta, claustrum, lateral septum, dorsal striatum, nucleus accumbens (core and shell), olfactory tubercle, bed nucleus of stria terminalis (BST), medial, central, cortical, and basal nuclei of amygdala, and the suprachiasmatic, arcuate, and dorsomedial nuclei of the hypothalamus. The posterior PV distributes more heavily than the anterior PV to the dorsal striatum and to the central and basal nuclei of amygdala. PT projections significantly overlap with those of PV, with some important differences. PT distributes less heavily than PV to BST and to the amygdala, but much more densely to the medial prefrontal and entorhinal cortices and to the ventral subiculum of hippocampus. As described herein, PV/PT receive a vast array of afferents from the brainstem, hypothalamus, and limbic forebrain, related to arousal and attentive states of the animal, and would appear to channel that information to structures of the limbic forebrain in the selection of appropriate responses to changing environmental conditions. Depending on the specific complement of emotionally associated information reaching PV/PT at any one time, PV/PT would appear positioned, by actions on the limbic forebrain, to direct behavior toward a particular outcome over a range of outcomes. J. Comp. Neurol. 508:212–237, 2008. © 2008 Wiley-Liss, Inc.

263 citations


Journal ArticleDOI
01 Sep 2008-Cortex
TL;DR: A new theoretical framework for the distributed neural circuits is introduced, based on general, and specific, principles of anatomical organization, and on the architecture of the nodes that comprise these systems, which proposes that neural architecture determines function.

Journal ArticleDOI
TL;DR: This review will examine the specific neuronal pathways, transmitters, and receptors composing the ascending arousal system that flow from the brainstem through the thalamus, hypothalamus, and basal forebrain to the cerebral cortex, and the role of homeostatic and circadian processes in the sleep-wake cycle.
Abstract: Increased attention to the prevalence of excessive sleepiness has led to a clear need to treat this symptom, thus reinforcing the need for a greater understanding of the neurobiology of sleep and wakefulness. Although the physiological mechanisms of sleep and wakefulness are highly interrelated, recent research reveals that there are distinct differences in the active brain processing and the specific neurochemical systems involved in the two states. In this review, we will examine the specific neuronal pathways, transmitters, and receptors composing the ascending arousal system that flow from the brainstem through the thalamus, hypothalamus, and basal forebrain to the cerebral cortex. We will also discuss the mutually inhibitory interaction between the core neuronal components of this arousal system and the sleep-active neurons in the ventrolateral preoptic nucleus, which serves as a brainstem-switch, regulating the stability of the sleep-wake states. In addition, we will review the role of homeostatic and circadian processes in the sleep-wake cycle, including the influence of the suprachiasmatic nucleus on coordination of sleep-wake systems. Finally, we will summarize how the above processes are reflected in disorders of sleep and wakefulness, including insomnia, narcolepsy, disorders associated with fragmented sleep, circadian rhythm sleep disorders, and primary neurological disorders such as Parkinson’s and Alzheimer’s diseases.

Journal ArticleDOI
TL;DR: The PVT was found to innervate regions in the extended amygdala that contained corticotropin‐releasing factor (CRF) neurons, many of which were found to receive apparent contacts from PVT fibers, placing the PVT in a key anatomical position to influence adaptive behaviors as well as the physiological and neuroendocrine responses associated with these behaviors.
Abstract: The paraventricular nucleus of the thalamus (PVT) is part of a group of midline and intralaminar thalamic nuclei implicated in arousal and attention. This study examined the connections between the PVT and the forebrain by using the retrograde tracer cholera toxin B (CTb) and the anterograde tracer biotin dextran amine (BDA). The anterior and posterior regions of the PVT were found to send a dense projection to the nucleus accumbens. The posterior PVT was also found to provide a strong projection to the lateral bed nucleus of the stria terminalis (BST), interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and central nucleus of the amygdala (CeA), regions associated with the extended amygdala. In contrast, the anterior PVT was found to send a weaker projection to the extended amygdala. The basolateral nucleus of the amygdala and the medial prefrontal cortex were found to receive a relatively weak projection from the PVT, and other regions of the BST and amygdala were found to be poorly innervated by the PVT. In addition, the PVT was found to innervate regions in the extended amygdala that contained corticotropin-releasing factor (CRF) neurons, many of which were found to receive apparent contacts from PVT fibers. The projection from the PVT to the nucleus accumbens and extended amygdala places the PVT in a key anatomical position to influence adaptive behaviors as well as the physiological and neuroendocrine responses associated with these behaviors.

Journal ArticleDOI
TL;DR: These studies demonstrate that the cortico-thalamic projection cannot be viewed in isolation, but must be considered as an integral part of a thalamo-corticothalamic circuit which intimately interconnects the thalamus and cortex for sensory processing.

Book ChapterDOI
01 Jan 2008
TL;DR: An overview of connectivity of the prefrontal cortex, arguably the most richly connected of all cortical regions, opens the way to subsequent chapters, where connectivity is found to be the key to all its functions.
Abstract: This chapter focuses on the anatomy and developmental neurobiology of the prefrontal cortex. It begins with a discussion of issues related to the phylogenetic development and comparative anatomy of the neocortex of the frontal lobe. The chapter also deals with its ontogenetic development and the morphological changes it undergoes as a result of aging. The ontogenetic development of the prefrontal cortex reflects its phylogeny. Orbitomedial areas mature earlier than lateral ones. In early life, neurons in the prefrontal cortex proliferate migrate to their ultimate cortical destination, and experience growth according to the timetable that prevails throughout the neocortex. The chapter then deals with the anatomy and microscopic architecture of the prefrontal cortex in the adult organism. Different regions of the prefrontal cortex have different sets of reciprocal connections. An overview of the afferent and efferent connections of the prefrontal cortex in several species is also provided in the chapter. This overview of connectivity of the prefrontal cortex, arguably the most richly connected of all cortical regions, opens the way to subsequent chapters, where connectivity is found to be the key to all its functions.

Journal ArticleDOI
TL;DR: This article synthesizes recent studies regarding neural representations of time-varying signals in auditory cortex and thalamus in awake marmoset monkeys to indicate that the auditory cortex forms internal representations of temporal characteristics of sounds that are no longer faithful replicas of their acoustic structures.

Journal ArticleDOI
TL;DR: It is demonstrated here that on- and off-center geniculate afferents segregate in different domains of the cat primary visual cortex and that off responses dominate the cortical representation of the area centralis.
Abstract: On- and off-center geniculate afferents form two major channels of visual processing that are thought to converge in the primary visual cortex. However, humans with severely reduced on responses can have normal visual acuity when tested in a white background, which indicates that off channels can function relatively independently from on channels under certain conditions. Consistent with this functional independence of channels, we demonstrate here that on- and off-center geniculate afferents segregate in different domains of the cat primary visual cortex and that off responses dominate the cortical representation of the area centralis. On average, 70% of the geniculate afferents converging at the same cortical domain had receptive fields of the same contrast polarity. Moreover, off-center afferents dominated the representation of the area centralis in the cortex, but not in the thalamus, indicating that on- and off-center afferents are balanced in number, but not in the amount of cortical territory that they cover.

Journal ArticleDOI
TL;DR: It is found that electrical stimulation in all thalamic nuclei elicited large, glutamatergic excitatory postsynaptic potentials (EPSPs) that depress in response to repetitive stimulation and that fail to activate a metabotropic glutamate response, which suggests an alternate route for information transfer between cortical areas via a corticothalamocortical pathway.
Abstract: The thalamus is an essential structure in the mammalian forebrain conveying information topographically from the sensory periphery to primary neocortical areas. Beyond this initial processing stage, "higher-order" thalamocortical connections have been presumed to serve only a modulatory role, or are otherwise functionally disregarded. Here we demonstrate that these "higher-order" thalamic nuclei share similar synaptic properties with the "first-order" thalamic nuclei. Using whole cell recordings from layer 4 neurons in thalamocortical slice preparations in the mouse somatosensory and auditory systems, we found that electrical stimulation in all thalamic nuclei elicited large, glutamatergic excitatory postsynaptic potentials (EPSPs) that depress in response to repetitive stimulation and that fail to activate a metabotropic glutamate response. In contrast, the intracortical inputs from layer 6 to layer 4 exhibit facilitating EPSPs. These data suggest that higher-order thalamocortical projections may serve a functional role similar to the first-order nuclei, whereas both are physiologically distinct from the intracortical layer 6 inputs. These results suggest an alternate route for information transfer between cortical areas via a corticothalamocortical pathway.

Journal ArticleDOI
TL;DR: In lightly sedated rats, focal enhancement of motor cortex activity facilitated sensory-evoked responses of topographically aligned neurons in primary somatosensory cortex, including antidromically identified corticothalamic cells; similar effects were observed in ventral posterior medial thalamus (VPm).
Abstract: In sedated and whisking rats, the authors show that motor cortex activity enhances sensory processing through a cortico-cortico-thalamic feedback circuit. In whisking rats, however, inhibitory brainstem input to the thalamus was also enhanced, leading to a net suppression of thalamic sensory responses. A prominent feature of thalamocortical circuitry in sensory systems is the extensive and highly organized feedback projection from the cortex to the thalamic neurons that provide stimulus-specific input to the cortex. In lightly sedated rats, we found that focal enhancement of motor cortex activity facilitated sensory-evoked responses of topographically aligned neurons in primary somatosensory cortex, including antidromically identified corticothalamic cells; similar effects were observed in ventral posterior medial thalamus (VPm). In behaving rats, thalamic responses were normally smaller during whisking but larger when signal transmission in brainstem trigeminal nuclei was bypassed or altered. During voluntary movement, sensory activity may be globally suppressed in the brainstem, whereas signaling by cortically facilitated VPm neurons is simultaneously enhanced relative to other VPm neurons receiving no such facilitation.

Journal ArticleDOI
TL;DR: A comparison of the extents of deafferentation across the monkeys shows that even if the dorsal column lesion is partial, preserving most of the hand representation, it is sufficient to induce an expansion of the face representation.
Abstract: Adult brains undergo large-scale plastic changes after peripheral and central injuries. Although it has been shown that both the cortical and thalamic representations can reorganize, uncertainties exist regarding the extent, nature, and time course of changes at each level. We have determined how cortical representations in the somatosensory area 3b and the ventroposterior (VP) nucleus of thalamus are affected by long standing unilateral dorsal column lesions at cervical levels in macaque monkeys. In monkeys with recovery periods of 22-23 months, the intact face inputs expanded into the deafferented hand region of area 3b after complete or partial lesions of the dorsal columns. The expansion of the face region could extend all the way medially into the leg and foot representations. In the same monkeys, similar expansions of the face representation take place in the VP nucleus of the thalamus, indicating that both these processing levels undergo similar reorganizations. The receptive fields of the expanded representations were similar in somatosensory cortex and thalamus. In two monkeys, we determined the extent of the brain reorganization immediately after dorsal column lesions. In these monkeys, the deafferented regions of area 3b and the VP nucleus became unresponsive to the peripheral touch immediately after the lesion. No reorganization was seen in the cortex or the VP nucleus. A comparison of the extents of deafferentation across the monkeys shows that even if the dorsal column lesion is partial, preserving most of the hand representation, it is sufficient to induce an expansion of the face representation.

Journal ArticleDOI
TL;DR: Comparison of the expression of transporter and receptor genes allows us to map sites of autoreceptor activity within the brain and identifies parallel genetic pathways used to build the 5‐HT system in zebrafish.
Abstract: In this study we analyze 5-hydroxytryptamine [5-HT]; serotonin) signaling in zebrafish, an increasingly popular vertebrate disease model. We compare and contrast expression of the 5-HT transporter genes slc6a4a and slc6a4b, which identify 5-HT-producing neurons and three novel 5-HT receptors, htr1aa, htr1ab, and htr1bd. slc6a4a and slc6a4b are expressed in the raphe nuclei, retina, medulla oblongata, paraventricular organ, pretectal diencephalic complex, and caudal zone of the periventricular hypothalamus, in line with the expression profiles of homologues from other vertebrates. Our analysis of serotonin transporter (SERT)-encoding genes also identifies parallel genetic pathways used to build the 5-HT system in zebrafish. In cells in which 5-HT is synthesized by tph1, slc6a4b is used for re-uptake, whereas tph2-positive cells utilize slc6a4a. The receptors htr1aa, htr1ab, and htr1bd also show widespread expression in both the larval and adult brain. Receptor expression is seen in the superior raphe nucleus, retina, ventral telencephalon, optic tectum, thalamus, posterior tuberculum, cerebellum, hypothalamus, and reticular formation, thus implicating 5-HT signaling in several neural circuits. We also examine larval brains double-labeled with 5-HTergic and dopaminergic pathway-specific antibodies, to uncover the identity of some 5-HTergic target neurons. Furthermore, comparison of the expression of transporter and receptor genes also allows us to map sites of autoreceptor activity within the brain. We detect autoreceptor activity in the pretectal diencephalic cluster (htr1aa-, htr1ab-, htr1bd-, and slc6a4a-positive), superior raphe nucleus (htr1aa-, htr1ab-, and slc6a4a-positive), paraventricular organ (htr1aa-, htr1ab-, htr1bd-, and slc6a4b-positive), and the caudal zone of the periventricular hypothalamus (htr1ab- and slc6a4b-positive). J. Comp. Neurol. 511:521–542, 2008. © 2008 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The hypothesis that information is routed from one area of the auditory cortex (AC) to another via the dorsal division of the medial geniculate body (MGBd) by analyzing the degree of reciprocal connectivity between the auditory thalamus and cortex is tested.
Abstract: We tested the hypothesis that information is routed from one area of the auditory cortex (AC) to another via the dorsal division of the medial geniculate body (MGBd) by analyzing the degree of reciprocal connectivity between the auditory thalamus and cortex. Biotinylated dextran amine injected into the primary AC (AI) or anterior auditory field (AAF) of mice produced large, “driver-type” terminals primarily in the MGBd, with essentially no such terminals in the ventral MGB (MGBv). In contrast, small, “modulator-type” terminals were found primarily in the MGBv, and this coincided with areas of retrogradely labeled thalamocortical cell bodies. After MGBv injections, anterograde label was observed in layers 4 and 6 of the AI and AAF, which coincided with retrogradely labeled layer 6 cell bodies. After MGBd injections, thalamocortical terminals were seen in layers 1, 4, and 6 of the secondary AC and dorsoposterior AC, which coincided with labeled layer 6 cell bodies. Notably, after MGBd injection, a substantial number of layer 5 cells were labeled in all AC areas, whereas very few were seen after MGBv injection. Further, the degree of anterograde label in layer 4 of cortical columns containing labeled layer 6 cell bodies was greater than in columns containing labeled layer 5 cell bodies. These data suggest that auditory layer 5 corticothalamic projections are targeted to the MGBd in a nonreciprocal fashion and that the MGBd may route this information to the nonprimary AC. J. Comp. Neurol. 507:1209–1227, 2008. © 2008 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is suggested that ictal neocortical slow waves represent an altered cortical state of depressed function, not propagated seizure activity, which may cause impaired cerebral functions, including loss of consciousness.
Abstract: Seizures have both local and remote effects on nervous system function. Whereas propagated seizures are known to disrupt cerebral activity, little work has been done on remote network effects of seizures that do not propagate. Human focal temporal lobe seizures demonstrate remote changes including slow waves on electroencephalography (EEG) and decreased cerebral blood flow (CBF) in the neocortex. Ictal neocortical slow waves have been interpreted as seizure propagation; however, we hypothesize that they reflect a depressed cortical state resembling sleep or coma. To investigate this hypothesis, we performed multimodal studies of partial and secondarily generalized limbic seizures in rats. Video/EEG monitoring of spontaneous seizures revealed slow waves in the frontal cortex during behaviorally mild partial seizures, contrasted with fast polyspike activity during convulsive generalized seizures. Seizures induced by hippocampal stimulation produced a similar pattern, and were used to perform functional magnetic resonance imaging weighted for blood oxygenation and blood volume, demonstrating increased signals in hippocampus, thalamus and septum, but decreases in orbitofrontal, cingulate, and retrosplenial cortex during partial seizures, and increases in all of these regions during propagated seizures. Combining these results with neuronal recordings and CBF measurements, we related neocortical slow waves to reduced neuronal activity and cerebral metabolism during partial seizures, but found increased neuronal activity and metabolism during propagated seizures. These findings suggest that ictal neocortical slow waves represent an altered cortical state of depressed function, not propagated seizure activity. This remote effect of partial seizures may cause impaired cerebral functions, including loss of consciousness.

Journal ArticleDOI
TL;DR: During the surgical intervention in ten patients with neurogenic pain, local field potentials were recorded from the posterior part of the central lateral nucleus and the highest thalamocortical coherence was found in the 4- to 9-Hz theta frequency band.

Journal ArticleDOI
TL;DR: This fate map of serotonin transporter expressing cells emphasizes the broad expression of SERT in non-serotonin neurons during development and clarifies the localization of Sert expression in the hippocampus and limbic cortex.

Journal ArticleDOI
TL;DR: It is proposed that integration of auditory and somatotopically organized somatosensory modalities reported here may play a role in auditory fear conditioning.
Abstract: Compared with other areas of the forebrain, the function of insular cortex is poorly understood. This study examined the unisensory and multisensory function of the rat insula using high-resolution, whole-hemisphere, epipial evoked potential mapping. We found the posterior insula to contain distinct auditory and somatotopically organized somatosensory fields with an interposed and overlapping region capable of integrating these sensory modalities. Unisensory and multisensory responses were uninfluenced by complete lesioning of primary and secondary auditory and somatosensory cortices, suggesting a high degree of parallel afferent input from the thalamus. In light of the established connections of the posterior insula with the amygdala, we propose that integration of auditory and somatosensory modalities reported here may play a role in auditory fear conditioning.

Journal ArticleDOI
TL;DR: The putative neural circuit of aggressive motivation identified with fMRI includes neural substrates contributing to emotional expression, emotional experience and the anterior thalamic nuclei that bridge the motor and cognitive components of aggressive responding.
Abstract: With the advent of functional magnetic resonance imaging (fMRI) in awake animals it is possible to resolve patterns of neuronal activity across the entire brain with high spatial and temporal resolution. Synchronized changes in neuronal activity across multiple brain areas can be viewed as functional neuroanatomical circuits coordinating the thoughts, memories and emotions for particular behaviors. To this end, fMRI in conscious rats combined with 3D computational analysis was used to identifying the putative distributed neural circuit involved in aggressive motivation and how this circuit is affected by drugs that block aggressive behavior. To trigger aggressive motivation, male rats were presented with their female cage mate plus a novel male intruder in the bore of the magnet during image acquisition. As expected, brain areas previously identified as critical in the organization and expression of aggressive behavior were activated, e.g., lateral hypothalamus, medial basal amygdala. Unexpected was the intense activation of the forebrain cortex and anterior thalamic nuclei. Oral administration of a selective vasopressin V1a receptor antagonist SRX251 or the selective serotonin reuptake inhibitor fluoxetine, drugs that block aggressive behavior, both caused a general suppression of the distributed neural circuit involved in aggressive motivation. However, the effect of SRX251, but not fluoxetine, was specific to aggression as brain activation in response to a novel sexually receptive female was unaffected. The putative neural circuit of aggressive motivation identified with fMRI includes neural substrates contributing to emotional expression (i.e. cortical and medial amygdala, BNST, lateral hypothalamus), emotional experience (i.e. hippocampus, forebrain cortex, anterior cingulate, retrosplenial cortex) and the anterior thalamic nuclei that bridge the motor and cognitive components of aggressive responding. Drugs that block vasopressin neurotransmission or enhance serotonin activity suppress activity in this putative neural circuit of aggressive motivation, particularly the anterior thalamic nuclei.

Journal ArticleDOI
TL;DR: Evidence is presented that the two VGluT isoforms are completely segregated at VP synapses, suggesting the presence of two distinct projection systems related to the core/matrix pattern of organization of thalamocortical connectivity described in other mammals.
Abstract: The ventral posterior nucleus of the thalamus (VP) receives two major sets of excitatory inputs, one from the ascending somatosensory pathways originating in the dorsal horn, dorsal column nuclei, and trigeminal nuclei, and the other originating from the cerebral cortex. Both systems use glutamate as neurotransmitter, as do the thalamocortical axons relaying somatosensory information from the VP to the primary somatosensory cortex (SI). The synapses formed by these projection systems differ anatomically, physiologically, and in their capacity for short-term synaptic plasticity. Glutamate uptake into synaptic vesicles and its release at central synapses depend on two isoforms of vesicular glutamate transporters, VGluT1 and VGluT2. Despite ample evidence of their complementary distribution, some instances exist of co-localization in the same brain areas or at the same synapses. In the thalamus, the two transcripts coexist in cells of the VP and other nuclei but not in the posterior or intralaminar nuclei. We show that the two isoforms are completely segregated at VP synapses, despite their widespread expression throughout the dorsal and ventral thalamus. We present immunocytochemical, ultrastructural, gene expression, and connectional evidence that VGluT1 in the VP is only found at corticothalamic synapses, whereas VGluT2 is only found at terminals made by axons originating in the spinal cord and brainstem. By contrast, the two VGluT isoforms are co-localized in thalamocortical axon terminals targeting layer IV, but not in those targeting layer I, suggesting the presence of two distinct projection systems related to the core/matrix pattern of organization of thalamocortical connectivity described in other mammals.

Journal ArticleDOI
TL;DR: It is suggested that ethosuximide will relieve human CPS by restoring normal thalamic excitability by reducing busting in lesionedThalamic slices and attenuated lesion-induced hyperalgesia and allodynia.
Abstract: Central pain syndrome (CPS) is defined as pain associated with a lesion of the CNS and is a common consequence of spinal cord injuries. We generated a rodent model of CPS by making unilateral electrolytic or demyelinating lesions centered on the spinothalamic tract in rats. Thermal hyperalgesia and mechanical allodynia occurred in both hind paws and forepaws by 7 d postlesion and were maintained >31 d. Field potentials in the ventral posterior lateral nucleus (VPL) in thalamic brain slices from lesioned animals displayed an increased probability of burst responses. Ethosuximide, a T-type calcium channel blocker, eliminated busting in lesioned thalamic slices and attenuated lesion-induced hyperalgesia and allodynia. We conclude that CPS in this model results from an increase in the excitability of thalamic nuclei that have lost normal ascending inputs as the result of a spinal cord injury and suggest that ethosuximide will relieve human CPS by restoring normal thalamic excitability.

Journal ArticleDOI
TL;DR: The receptor localization of metabotropic glutamate receptors (mGlu) 2 and 3 was examined by using in situ hybridization and a well-characterized mGlu2-selective antibody in the rat forebrain to support previous behavioral studies that the mGLU2 and 3 receptors may play important roles in emotional responses.