scispace - formally typeset
E

E. Karpel

Researcher at Stanford University

Publications -  50
Citations -  4203

E. Karpel is an academic researcher from Stanford University. The author has contributed to research in topics: Cosmic microwave background & Planck. The author has an hindex of 16, co-authored 45 publications receiving 2990 citations.

Papers
More filters
Journal ArticleDOI

The Simons Observatory : Science goals and forecasts

Peter A. R. Ade, +279 more
TL;DR: The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s as mentioned in this paper.
Journal ArticleDOI

Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band

TL;DR: An analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors.
Journal ArticleDOI

The Simons Observatory: Science goals and forecasts

Peter A. R. Ade, +248 more
TL;DR: The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s as discussed by the authors.
Journal ArticleDOI

Constraints on Primordial Gravitational Waves Using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season.

Peter A. R. Ade, +84 more
TL;DR: Results from an analysis of all data taken by the bicep2/Keck CMB polarization experiments up to and including the 2015 observing season are presented, showing the strongest constraints to date on primordial gravitational waves.
Journal ArticleDOI

Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season.

P. A. R. Ade, +91 more
TL;DR: In this paper, the authors present results from an analysis of all data taken by the BICEP2, Keck Array, and BiceP3 CMB polarization experiments up to and including the 2018 observing season.