scispace - formally typeset
E

Edward L. Wright

Researcher at University of California, Los Angeles

Publications -  662
Citations -  137397

Edward L. Wright is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Cosmic microwave background & Galaxy. The author has an hindex of 119, co-authored 649 publications receiving 128250 citations. Previous affiliations of Edward L. Wright include Princeton University & University of California, Berkeley.

Papers
More filters
Journal ArticleDOI

The Spitzer Deep, Wide-field Survey

Abstract: The Spitzer Deep, Wide-Field Survey (SDWFS) is a four-epoch infrared survey of 10 deg^(2) in the Bootes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. SDWFS, a Spitzer Cycle 4 Legacy project, occupies a unique position in the area-depth survey space defined by other Spitzer surveys. The four epochs that make up SDWFS permit-for the first time-the selection of infrared-variable and high proper motion objects over a wide field on timescales of years. Because of its large survey volume, SDWFS is sensitive to galaxies out to z ~ 3 with relatively little impact from cosmic variance for all but the richest systems. The SDWFS data sets will thus be especially useful for characterizing galaxy evolution beyond z ~ 1.5. This paper explains the SDWFS observing strategy and data processing, presents the SDWFS mosaics and source catalogs, and discusses some early scientific findings. The publicly released, full-depth catalogs contain 6.78, 5.23, 1.20, and 0.96 x 10^(5) distinct sources detected to the average 5 sigma, 4"-diameter, aperture-corrected limits of 19.77, 18.83, 16.50, and 15.82 Vega mag at 3.6, 4.5, 5.8, and 8.0 mu m, respectively. The SDWFS number counts and color-color distribution are consistent with other, earlier Spitzer surveys. At the 6 minute integration time of the SDWFS IRAC imaging, > 50% of isolated Faint Images of the Radio Sky at Twenty cm radio sources and > 80% of on-axis XBootes sources are detected out to 8.0 mu m. Finally, we present the four highest proper motion IRAC-selected sources identified from the multi-epoch imaging, two of which are likely field brown dwarfs of mid-T spectral class.
Journal ArticleDOI

Observational confirmation of a circumsolar dust ring by the COBE satellite

TL;DR: In this paper, the authors used the Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer satellite (COBE) to confirm both the existence of this ring and the predictions of its near-Earth structure.
Journal ArticleDOI

Interpretation of the Cosmic Microwave Background radiation anisotropy detected by the COBE differential microwave radiometer

TL;DR: The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability as discussed by the authors.