Author
Françoise Bachelerie
Other affiliations: University of California, Los Angeles, University of Paris-Sud, Curie Institute ...read more
Bio: Françoise Bachelerie is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Chemokine receptor & Chemokine. The author has an hindex of 39, co-authored 83 publications receiving 9392 citations. Previous affiliations of Françoise Bachelerie include University of California, Los Angeles & University of Paris-Sud.
Topics: Chemokine receptor, Chemokine, CXCR4, Receptor, WHIM syndrome
Papers published on a yearly basis
Papers
More filters
TL;DR: The identification of a human chemokine of the CXC type, stromal cell-derived factor 1 (SDF-1), as the natural ligand for LESTR/fusin, and the term CXCR-4 is proposed for this receptor, in keeping with the new Chemokine-receptor nomenclature.
Abstract: APUTATIVE chemokine receptor that we previously cloned and termed LESTR1 has recently been shown to function as a co-receptor (termed fusin) for lymphocyte-tropic HIV-1 strains2. Cells expressing CD4 became permissive to infection with T-cell-line-adapted HIV-1 strains of the syncytium-inducing phenotype after transfection with LESTR/fusin complementary DNA. We report here the identification of a human chemokine of the CXC type, stromal cell-derived factor 1 (SDF-1), as the natural ligand for LESTR/fusin, and we propose the term CXCR-4 for this receptor, in keeping with the new chemokine-receptor nomenclature. SDF-1 activates Chinese hamster ovary (CHO) cells transfected with CXCR-4 cDNA as well as blood leukocytes and lymphocytes. In cell lines expressing CXCR-4 and CD4, and in blood lymphocytes, SDF-1 is a powerful inhibitor of infection by lymphocyte-tropic HIV-1 strains, whereas the CC chemokines RANTES, MIP-lα and MIP-1β, which were shown previously to prevent infection with primary, monocyte-tropic viruses3, are inactive. In combination with CC chemokines, which block the infection with monocyte/macrophage-tropic viruses, SDF-1 could help to decrease virus load and prevent the emergence of the syncytium-inducing viruses which are characteristic of the late stages of AIDS4.
1,658 citations
TL;DR: It is demonstrated that RDC1 is expressed in T lymphocytes and that CXCL12-promoted chemotaxis is inhibited by an anti-RDC1 monoclonal antibody, and it is shown that CxCL12, the only known natural ligand for CXCR4, binds to and signals through R DC1.
Abstract: Combined phylogenetic and chromosomal location studies suggest that the orphan receptor RDC1 is related to CXC chemokine receptors. RDC1 provides a co-receptor function for a restricted number of human immunodeficiency virus (HIV) isolates, in particular for the CXCR4-using HIV-2 ROD strain. Here we show that CXCL12, the only known natural ligand for CXCR4, binds to and signals through RDC1. We demonstrate that RDC1 is expressed in T lymphocytes and that CXCL12-promoted chemotaxis is inhibited by an anti-RDC1 monoclonal antibody. Concomitant blockade of RDC1 and CXCR4 produced additive inhibitory effects in CXCL12-induced T cell migration. Furthermore, we provide evidence that interaction of CXCL12 with RDC1 is specific, saturable, and of high affinity (apparent KD approximately 0.4 nM). In CXCR4-negative cells expressing RDC1, CXCL12 promotes internalization of the receptor and chemotactic signals through RDC1. Collectively, our data indicate that RDC1, which we propose to rename as CXCR7, is a receptor for CXCL12.
1,032 citations
TL;DR: The CRM1 protein could act as a NES receptor involved in nuclear protein export in a system which reconstituted NES, cytosol, and energy-dependent nuclear export, and leptomycin B specifically blocked export of NES-containing proteins.
Abstract: Chromosome maintenance region 1 (CRM1), a protein that shares sequence similarities with the karyopherin β family of proteins involved in nuclear import pathway, was shown to form a complex with the leucine-rich nuclear export signal (NES). This interaction was inhibited by leptomycin B, a drug that prevents the function of the CRM1 protein in yeast. To analyze the role of the CRM1-NES interaction in nuclear export, a transport assay based on semipermeabilized cells was developed. In this system, which reconstituted NES-, cytosol-, and energy-dependent nuclear export, leptomycin B specifically blocked export of NES-containing proteins. Thus, the CRM1 protein could act as a NES receptor involved in nuclear protein export.
715 citations
University of Paris-Sud1, Tel Aviv University2, University of California, Irvine3, French Institute of Health and Medical Research4, National Institutes of Health5, University of Glasgow6, University of California, Davis7, University of Copenhagen8, University of Milan9, Harvard University10, University of Tokyo11, Kumamoto University12, Merck KGaA13, University of Birmingham14, University of Brescia15, Kindai University16
TL;DR: This work reviews this extended family of chemokine receptors and Chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development and introduces a new nomenclature for atypical chemokin receptors with the stem ACKR (atypicalChemokine receptor).
Abstract: Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145–176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
709 citations
TL;DR: It is shown that CXCR7 per se does not trigger G( Ralphai) protein-dependent signaling, although energy transfer assays indicate that it constitutively interacts with G(alphai) proteins and undergoes CXCL12-mediated conformational changes.
Abstract: The stromal cell-derived factor-1/CXCL12 chemokine engages the CXCR4 and CXCR7 receptors and regulates homeostatic and pathologic processes, including organogenesis, leukocyte homeostasis, and tumorigenesis. Both receptors are widely expressed in mammalian cells, but how they cooperate to respond to CXCL12 is not well understood. Here, we show that CXCR7 per se does not trigger G(alphai) protein-dependent signaling, although energy transfer assays indicate that it constitutively interacts with G(alphai) proteins and undergoes CXCL12-mediated conformational changes. Moreover, when CXCR4 and CXCR7 are coexpressed, we show that receptor heterodimers form as efficiently as receptor homodimers, thus opening the possibility that CXCR4/CXCR7 heterodimer formation has consequences on CXCL12-mediated signals. Indeed, expression of CXCR7 induces conformational rearrangements within preassembled CXCR4/G(alphai) protein complexes and impairs CXCR4-promoted G(alphai)-protein activation and calcium responses. Varying CXCR7 expression levels and blocking CXCL12/CXCR7 interactions in primary T cells suggest that CXCR4/CXCR7 heterodimers form in primary lymphocytes and regulate CXCL12-promoted chemotaxis. Taken together, these results identify CXCR4/CXCR7 heterodimers as distinct functional units with novel properties, which can contribute to the functional plasticity of CXCL12.
541 citations
Cited by
More filters
TL;DR: The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases.
Abstract: ▪ Abstract The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on the following: its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases. A primary level of control for NF-κB is through interactions with an inhibitor protein called IκB. Recent evidence confirms the existence of multiple forms of IκB that appear to regulate NF-κB by distinct mechanisms. NF-κB can be activated by exposure of cells to LPS or inflammatory cytokines such as TNF or IL-1, viral infection or expression of certain viral gene products, UV irradiation, B or T cell activation, and by other physiological and nonphysiological stimuli. Activation of NF-κB to move into the nucleus is controlled by the targeted phosphorylation and subsequent degradation of IκB. Exciting new research has elaborated several important and unexpected findings that...
5,833 citations
TL;DR: Recent progress has been made in understanding the details of the signaling pathways that regulate NF-kappaB activity, particularly those responding to the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1.
Abstract: NF-κB (nuclear factor-κB) is a collective name for inducible dimeric transcription factors composed of members of the Rel family of DNA-binding proteins that recognize a common sequence motif. NF-κ...
4,724 citations
TL;DR: In chronic inflammatory diseases, such as asthma, rheumatoid arthritis, inflammatory bowel disease, and psoriasis, several cytokines recruit activated immune and inflammatory cells to the site of lesions, thereby amplifying and perpetuating the inflammatory state.
Abstract: In chronic inflammatory diseases, such as asthma, rheumatoid arthritis, inflammatory bowel disease, and psoriasis, several cytokines recruit activated immune and inflammatory cells to the site of lesions, thereby amplifying and perpetuating the inflammatory state.1 These activated cells produce many other mediators of inflammation. What causes these diseases is still a mystery, but the disease process results from an interplay of genetic and environmental factors. Genes, such as those for atopy in asthma and for HLA antigens in rheumatoid arthritis and inflammatory bowel disease, may determine a patient's susceptibility to the disease and the disease's severity, but environmental factors, often unknown, . . .
4,624 citations
TL;DR: An overview of established NF-kappaB signaling pathways is provided with focus on the current state of research into the mechanisms that regulate IKK activation and NF- kappaB transcriptional activity.
Abstract: The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.
3,829 citations
TL;DR: It is argued that NF-κB functions more generally as a central regulator of stress responses and pairing stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Abstract: Sixteen years have passed since the description of the nuclear factor-кB (NF-кB) as a regulator of к light-chain gene expression in murine B lymphocytes (Sen & Baltimore, 1986a) During that time, over 4,000 publications have appeared, characterizing the family of Rel/NF-кB transcription factors involved in the control of a large number of normal and pathological cellular processes The physiological functions of NF-кB proteins include immunological and inflammatory responses, developmental processes, cellular growth and modulating effects on apoptosis In addition, these factors are activated in a number of diseases, including cancer, arthritis, acute and chronic inflammatory states, asthma, as well as neurodegenerative and heart diseases
3,728 citations