scispace - formally typeset
Search or ask a question

Showing papers by "Hossein Baharvand published in 2013"


Journal ArticleDOI
TL;DR: An inducible short hairpin RNA vector is constructed that is expressed under induction by doxycycline and concludes that Fndc5 expression is required for the appropriate neural differentiation of mESCs.

112 citations


Journal ArticleDOI
TL;DR: A scalable stirred-suspension bioreactor culture of functional hepatocyte-like cells (HLCs) from the human pluripotent stem cells (hPSCs) provides a new platform for generating functional HLCs and may facilitate biomedical applications of the hPSC-derived hepatocytes.
Abstract: Recent advances in human embryonic and induced pluripotent stem cell-based therapies in animal models of hepatic failure have led to an increased appreciation of the need to translate the proof-of-principle concepts into more practical and feasible protocols for scale up and manufacturing of functional hepatocytes. In this study, we describe a scalable stirred-suspension bioreactor culture of functional hepatocyte-like cells (HLCs) from the human pluripotent stem cells (hPSCs). To promote the initial differentiation of hPSCs in a carrier-free suspension stirred bioreactor into definitive endoderm, we used rapamycin for ‘‘priming’’ phase and activin A for induction. The cells were further differentiated into HLCs in the same system. HLCs were characterized and then purified based on their physiological function, the uptake of DiI-acetylated low-density lipoprotein (LDL) by flow cytometry without genetic manipulation or antibody labeling. The sorted cells were transplanted into the spleens of mice with acute liver injury from carbon tetrachloride. The differentiated HLCs had multiple features of primary hepatocytes, for example, the expression patterns of liver-specific marker genes, albumin secretion, urea production, collagen synthesis, indocyanin green and LDL uptake, glycogen storage, and inducible cytochrome P450 activity. They increased the survival rate, engrafted successfully into the liver, and continued to present hepatic function (i.e., albumin secretion after implantation). This amenable scaling up and outlined enrichment strategy provides a new platform for generating functional HLCs. This integrated approach may facilitate biomedical applications of the hPSC-derived hepatocytes.

107 citations


Journal ArticleDOI
TL;DR: The results have opened up a proof of concept that functional HLCs can be generated from hiPSCs, thus improving the general condition of a CCl4-injured mouse liver after their transplantation and bringing new insights in the clinical applications of hiPSC once safety issues are overcome.
Abstract: The generation of human induced pluripotent stem cells (hiPSCs) with a high differentiation potential provided a new source for hepatocyte generation not only for drug discovery and in vitro disease models, but also for cell replacement therapy. However, the reported hiPSC-derived hepatocyte-like cells (HLCs) were not well characterized and their transplantation, as the most promising clue of cell function was not reported. Here, we performed a growth factor-mediated differentiation of functional HLCs from hiPSCs and evaluated their potential for recovery of a carbon tetrachloride (CCl4)-injured mouse liver following transplantation. The hiPSC-derived hepatic lineage cells expressed hepatocyte-specific markers, showed glycogen and lipid storage activity, secretion of albumin (ALB), alpha-fetoprotein (AFP), urea, and CYP450 metabolic activity in addition to low-density lipoprotein (LDL) and indocyanin green (ICG) uptake. Similar results were observed with human embryonic stem cell (hESC)-derived HLCs. The transplantation of hiPSC-HLCs into a CCl4-injured liver showed incorporation of the hiPSC-HLCs into the mouse liver which resulted in a significant enhancement in total serum ALB after 1 week. A reduction of total serum LDH and bilirubin was seen when compared with the control and sham groups 1 and 5 weeks post-transplantation. Additionally, we detected human serum ALB and ALB-positive transplanted cells in both the host serum and livers, respectively, which showed functional integration of transplanted cells within the mouse livers. Therefore, our results have opened up a proof of concept that functional HLCs can be generated from hiPSCs, thus improving the general condition of a CCl4-injured mouse liver after their transplantation. These results may bring new insights in the clinical applications of hiPSCs once safety issues are overcome.

101 citations


Journal ArticleDOI
TL;DR: A series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing are highlighted.

85 citations


Journal ArticleDOI
TL;DR: Aneuploidy is commonly seen in human preimplantation embryos, most particularly at the cleavage stage because of genome activation by third cell division, and the potential of self-correction of these aberrations is addressed.
Abstract: Aneuploidy is commonly seen in human preimplantation embryos, most particularly at the cleavage stage because of genome activation by third cell division. Aneuploid embryos have been used for the derivation of normal embryonic stem cell (ESC) lines and developmental modeling. This review addresses aneuploidies in human preimplantation embryos and human ESCs and the potential of self-correction of these aberrations. Diploid-aneuploid mosaicism is the most frequent abnormality observed; hence, embryos selected by preimplantation genetic diagnosis at the cleavage or blastocyst stage could be partly abnormal. Differentiation is known as the barrier for eliminating mosaic embryos by death and/or decreased division of abnormal cells. However, some mosaicisms, such as copy number variations could be compatible with live birth. Several reasons have been proposed for self-correction of aneuploidies during later stages of development, including primary misdiagnosis, allocation of the aneuploidy in the trophectoderm, cell growth advantage of diploid cells in mosaic embryos, lagging of aneuploid cell division, extrusion or duplication of an aneuploid chromosome, and the abundance of DNA repair gene products. Although more studies are needed to understand the mechanisms of self-correction as a rare phenomenon, most likely, it is related to overcoming mosaicism.

76 citations


Journal ArticleDOI
TL;DR: The most recent update of MSY protein-encoding genes and their association with various traits and diseases including sex determination and reversal, spermatogenesis and male infertility, cancers such as prostate cancers, sex-specific effects on the brain and behavior, and graft-versus-host disease are presented.
Abstract: The Chromosome-centric Human Proteome Project (C-HPP) aims to systematically map the entire human proteome with the intent to enhance our understanding of human biology at the cellular level. This project attempts simultaneously to establish a sound basis for the development of diagnostic, prognostic, therapeutic, and preventive medical applications. In Iran, current efforts focus on mapping the proteome of the human Y chromosome. The male-specific region of the Y chromosome (MSY) is unique in many aspects and comprises 95% of the chromosome's length. The MSY continually retains its haploid state and is full of repeated sequences. It is responsible for important biological roles such as sex determination and male fertility. Here, we present the most recent update of MSY protein-encoding genes and their association with various traits and diseases including sex determination and reversal, spermatogenesis and male infertility, cancers such as prostate cancers, sex-specific effects on the brain and behavior, and graft-versus-host disease. We also present information available from RNA sequencing, protein-protein interaction, post-translational modification of MSY protein-coding genes and their implications in biological systems. An overview of Human Y chromosome Proteome Project is presented and a systematic approach is suggested to ensure that at least one of each predicted protein-coding gene's major representative proteins will be characterized in the context of its major anatomical sites of expression, its abundance, and its functional relevance in a biological and/or medical context. There are many technical and biological issues that will need to be overcome in order to accomplish the full scale mapping.

54 citations


Journal ArticleDOI
TL;DR: The generation of corrected hepatocyte-like cells (HLCs) from hiPSCs of a familial hypercholesterolemia patient with a homozygous mutation in the low-density lipoprotein receptor (LDLR) gene suggests that hiPSC technology can be used for generation of disease-corrected, patient-specific HLCs with potential value for disease modeling and drug discovery as well as cell therapy applications in future.
Abstract: The generation of human induced pluripotent stem cells (hiPSCs) from an individual patient provides a unique tool for disease modeling, drug discovery, and cell replacement therapies. Patient-specific pluripotent stem cells can be expanded in vitro and are thus suitable for genetic manipulations. To date, several genetic liver disorders have been modeled using patient-specific hiPSCs. Here, we present the generation of corrected hepatocyte-like cells (HLCs) from hiPSCs of a familial hypercholesterolemia (FH) patient with a homozygous mutation in the low-density lipoprotein receptor (LDLR) gene. We generated hiPSCs from a patient with FH with the mutated gene encoding a truncated non-functional receptor. In order to deliver normal LDLR to the defective cells, we used a plasmid vector carrying the normal receptor ORF to genetically transform the hiPSCs. The transformed cells were expanded and directed toward HLCs. Undifferentiated defective hiPSCs and HLCs differentiated from the defective hiPSCs did not have the ability to uptake labeled low-density lipoprotein (LDL) particles. The differentiated transformed hiPSCs showed LDL-uptake ability and the correction of disease phenotype as well as expressions of hepatocyte-specific markers. The functionality of differentiated cells was also confirmed by indo-cyanine green (ICG) uptake assay, PAS staining, inducible cyp450 activity, and oil red staining. These data suggest that hiPSC technology can be used for generation of disease-corrected, patient-specific HLCs with potential value for disease modeling and drug discovery as well as cell therapy applications in future.

49 citations


Journal ArticleDOI
30 Jan 2013-PLOS ONE
TL;DR: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation, which will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.
Abstract: Background Human embryonic stem cells (hESCs) have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes.

49 citations


Journal ArticleDOI
19 Aug 2013-PLOS ONE
TL;DR: The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages and possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases.
Abstract: Background Degeneration of retinal ganglion cells (RGCs) is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs) following intravitreal transplantation.

48 citations


Journal ArticleDOI
TL;DR: The data suggest that cytokines secreted by MSCs stimulate renal tubule cell regeneration after nephrotoxicity, and cell migration following scrape-wounding was increased in the presence of hMSC-CM, as compared to exposures to normal medium, indicating improved cell recovery.

48 citations


Journal ArticleDOI
TL;DR: Data have indicated that hESCs primed with Rapa, and induced by a lower concentration of activin A, could lead to DE that had the capability to further differentiate into HLCs and PP cells, but not PE cells.
Abstract: Despite the enormous progress in studying definitive endoderm (DE) differentiation from human embryonic stem cells (hESCs), none of the reported protocols have produced a universal, cost-effective, and competent DE with the capability to further differentiate into endodermal derivatives. In this study, by using a 2-step differentiation strategy, we have treated hESCs for 1 day with “priming” small molecules (SM), [stauprimide, NSC-308848, rapamycin (Rapa), and/or CHIR] and for the next 3 days with “inducing” SM (LY294002, cymarin, IDE1, and/or IDE2) in conjunction with activin A. In the positive control group, we treated hESCs with Wnt3a (25 ng/mL) for 1 day and activin A (100 ng/mL; W/A100-A100) for the next 3 days. Gene expression analysis showed that treatment of hESCs with 100 nM Rapa and 50 ng/mL activin A (Rapa-A50) out of 25 combinations of factors gave rise to higher expressions of 2 DE-specific genes, SOX17 and FOXA2. Similar results were obtained after treating 2 other hESC lines with this regim...

Journal ArticleDOI
TL;DR: It is demonstrated that hiPSC-MSC might be valuable appropriate alternatives for hBM-MSCs in FHF liver repair and support liver function by cell therapy with a large-scale production capacity, patient-specific nature, and no invasive MSC harvesting.

Journal ArticleDOI
TL;DR: Findings have shown that the differentiation process from hESCs and hiPSCs to vascular cell components is similar, and these may be used as an appropriate source for the treatment of SSc patients.

Journal ArticleDOI
TL;DR: Based on the presence of retinoic acid response elements (RAREs) in the regulatory region of many of the HOX genes, it is deduced that retINOic acid (RA) can influence epigenetic regulation and consequently the expression pattern of HOX during RA-induced differentiation of embryonic model systems as discussed by the authors.
Abstract: Gene activation of HOX clusters is an early event in embryonic development. These genes are highly expressed and active in the vertebrate nervous system. Based on the presence of retinoic acid response elements (RAREs) in the regulatory region of many of the HOX genes, it is deduced that retinoic acid (RA) can influence epigenetic regulation and consequently the expression pattern of HOX during RA-induced differentiation of embryonic model systems. In this investigation, the expression level as well as the epigenetic regulation of several HOX genes of the 4 A-D clusters was analyzed in human embryonic stem cells, and also through their neural induction, in the presence and absence of RA. Expression analysis data significantly showed increased mRNA levels of all examined HOX genes in the presence of RA. Epigenetic analysis of the HOX gene regulatory regions also showed a significant decrease in methylation of histone H3K27 parallel to an absolute preferential incorporation of the demethylase UTX rather than JMJD3 in RA-induced neural differentiated cells. This finding clearly showed the functional role of UTX in epigenetic alteration of HOX clusters during RA-induced neural differentiation; the activity could not be detectable for the demethylase JMJD3 during this developmental process.

Journal ArticleDOI
TL;DR: These results have suggested that electrospun nanofibrillar surfaces could provide a more favorable microenvironment for in vitro short term culture of spermatogonial stem-like cell colonies.
Abstract: Purpose Spermatogonial stem cells are affected by the interactions of extrinsic signals produced by components of the microenvironment niche, in addition to the chemical and physical properties of the extracellular matrix. Therefore, this study was initiated to assess the interaction of these cells on a synthetic nanofibrillar extracellular matrix that mimicked the geometry and nanotopography of the basement membrane for cellular growth.

Journal ArticleDOI
TL;DR: Repeat administration of MSCs was three times more effective in homing of PKH‐tagged transplanted cells 3 weeks post‐transplant compared with the single transplant group, suggesting the benefits of repeated transplants may be of considerable significance in clinical trials on liver failure.

Journal Article
01 Jan 2013-Cell
TL;DR: This procedure provides a rapid, cost effective purification of a soluble human bFGF protein that is biologically active and functional as measured in hESCs and hiPSCs in vitro and in vivo.

Journal ArticleDOI
TL;DR: In the early 2000s, the Iranian stem cell research and technology had a relatively strong start that benefited from religious blessings, political and public support, as well as scientific endeavors on the part of non-governmental and public research organizations and universities.
Abstract: In the early 2000s, the Iranian stem cell research and technology had a relatively strong start that benefited from religious blessings, political and public support, as well as scientific endeavors on the part of non-governmental and public research organizations and universities. Later on, it developed a dynamic niche market of public, private start-up, and spin-off companies and organizations that pioneered in the Islamic world in terms of ISI papers, clinical trials, and cell therapy. However, at present, it faces new challenges stemming from the insufficient finance and a comprehensive law and regulation structure to keep its momentum. To remedy this situation, the scientific community and other stakeholders need to have a series of shared long-time goals and try to build consensus on how to achieve them through nationally approved policy documents.

Journal ArticleDOI
TL;DR: In this article, the effect of dibutyryl cyclic AMP (dbcAMP) on experimental encephalomyelitis (EAE) symptoms, endogenous remyelination, and recruitment of NSCs was examined.
Abstract: Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system. Cyclic AMP and its analogs enhance regeneration of adult mammalian central nervous system (CNS). Endogenous neural stem cells (NSCs) play a pivotal role in CNS regeneration, producing new neuron and glial cells. Here, we examined the effect of dibutyryl cyclic AMP (dbcAMP) on experimental autoimmune encephalomyelitis (EAE) symptoms, endogenous remyelination, and recruitment of NSCs. EAE was induced by immunizing mice using myelin oligodendrocyte glycoprotein peptide and pertussis toxin. Proliferative cells within CNS were labeled using repetitive systemic injections of 5-bromo-2-deoxyuridine (BrdU) before EAE induction. Myelin staining was performed using Luxol fast blue. The number of nestin+ and BrdU+ cells in subventricular zone (SVZ) and olfactory bulb (OB) was evaluated using immunohistochemistry. dbcAMP suppressed EAE progression and decreased the extent of demyelinated plaques in the lumbar spinal cord. EAE induction reduced the number of proliferative cells in SVZ and increased their population in OB. EAE also increased the number of nestin+ cells in OB. We also found that dbcAMP increased the recruitment of NSCs into the OB and brain parenchyma of EAE mice. Our results suggest dbcAMP as a potential therapy for inducing myelin repair in the context of demyelinating diseases like multiple sclerosis. Its positive effect seems to be mediated, at least partially, by endogenous neural stem cells and their increased recruitment.

BookDOI
01 Jan 2013
TL;DR: The opportunities and emerging challenges of stem cellbased therapies are discussed and common neurological diseases that may benefit from such iatrogenic interventions are highlighted.
Abstract: The last decade has seen tremendous progress in stem cell biology, targeted genome editing, bioengineering, and systems neuroscience supporting the notion that cell therapy of various disorders of the central nervous system (CNS) may become clinical reality in the near future. In particular, the advent of induced pluripotent stem (iPS) cells and access to large quantities of patientand diseasespecific cellular material offers unique opportunities for developmental biology and regenerative medicine. It is now possible to investigate the molecular underpinnings of monogenic and complex human diseases using stem cell-derived neural phenotypes. Molecular insights from such studies will leverage the development of diagnostic tools, biomarkers, drugs, and cell replacement with the ultimate goal to halt or reverse the course of devastating maladies. In this book chapter, I shall discuss the opportunities and emerging challenges of stem cellbased therapies and highlight common neurological diseases that may benefit from such iatrogenic interventions.

Journal ArticleDOI
TL;DR: It was found that 3 μM CH was the only SM that was capable of directing SBs from fair and poor-quality 6-8-cell embryos into hESC lines, and this approach would allow the establishment of autogeneic or allogeneic matched cells from embryos fertilized in vitro without destroying them.
Abstract: Study question Could selected pluripotency-enhancing small molecules (SMs) lead to efficient derivation of human embryonic stem cells (hESCs) from cleavage embryos-derived single blastomeres (SBs)? Summary answer Inhibition of glycogen synthase kinase β (GSK3β) and Rho-associated kinase (ROCK) signaling can enhance the derivation of hESCs from cleavage embryo-derived SBs. What is known already Parameters involved in sustaining the pluripotency of biopsied blastomeres for generating hESCs without causing injury to a viable embryo have remained obscure. This research seeks to improve the culture conditions for increasing the efficiency of deriving hESCs from SBs from cleavage-stage embryos by using SMs. Study design, size, duration In order to identify SMs which may enhance hESC generation from SBs, 11 pluripotency-enhancing SMs were screened and CHIR99021 (CH), a GSK3β inhibitor, was selected. To optimize culture condition in hESC generation from SMs, we used ROCK inhibitor Y27632 (Y) and basic fibroblast growth factor in combination with CH or its alternative, Kenpaullone, in different time courses over 12 days. We also assessed a critical time point for CH + Y treatment of cleavage embryos from 4- to 8-cell embryo. In total, 224 embryos and 1607 SBs were used in the study. Participants/materials, setting, methods Blastomeres of fair and poor-quality from 6- to 8-cell stage human embryos were mechanically dispersed and individually seeded into a 96-well plate that was precoated with mitotically inactivated feeder cells. Derivation of hESC line from each SB was carried out in hESC defined medium supplemented with SMs. Randomly selected hESC lines were evaluated by immunostaining for pluripotency markers, karyotype analysis and differentiation potential into the three embryonic germ layer derivatives. Main results and the role of chance We found that 3 μM CH was the only SM that was capable of directing SBs from fair and poor-quality 6-8-cell embryos into hESC lines. The application of hESC-conditioned medium had no additive effect on hESC establishment from SBs. Also, we indicated that CH combined with Y improved hESC generation efficiency by up to 31%. By using of Kenpaullone as an alternative to CH, we confirmed the involvement of GSK3 inhibition in hESC derivation from SBs. Interestingly, by treatment of 4-cell embryos, these SMs could enhance the derivation efficiency of SB-derived hESC lines up to 73% and the maximum number of hESC lines from SBs of one embryo was achieved in this state. Limitations, reasons for caution The low quality of the embryos used in this study most likely had an effect on hESC generation. Furthermore, although we attempted to minimize any differences in inter-embryo quality, we cannot exclude the possibility that small differences in starting quality between embryos may have contributed to the differences observed, other than the addition of SMs. Wider implications of the findings This approach would allow the establishment of autogeneic or allogeneic matched cells from embryos fertilized in vitro without destroying them. Study funding/competing interest(s) This study was financially supported by the National Elite Foundation and the Royan Institute for Stem Cell Biology and Technology. The authors have no conflict of interest to declare.

Journal ArticleDOI
TL;DR: Proteome results clearly showed that the expression levels of several differentially expressed proteins in EAE samples returned to sham levels after transplantation, which suggested a possible correlation between changes at the proteome level and decreased clinical signs of EAE in transplanted mice.

Book ChapterDOI
TL;DR: This protocol involves the use of small molecules SB431542 and PD0325901, which inhibit transforming growth factor-β (TGF-β) and extracellular signal-regulated kinases (ERK1/2), respectively, which are universal in the derivation of mESC lines from NMRI, C57BL/6, BALB/c, DBA/2, and FVB/N strains.
Abstract: Here, we present a highly efficient and reproducible method for the establishment of mouse embryonic stem cells (mESCs) from embryonic day 3.5 (E3.5) whole blastocysts. This protocol involves the use of small molecules SB431542 and PD0325901, which inhibit transforming growth factor-β (TGF-β) and extracellular signal-regulated kinases (ERK1/2), respectively. This protocol is universal in the derivation of mESC lines from NMRI, C57BL/6, BALB/c, DBA/2, and FVB/N strains, which have previously been considered refractory or non-permissive for ESC establishment. The efficiency of mESC lines generation is 100%, regardless of genetic background.

Journal ArticleDOI
TL;DR: The development of an extracellular matrix (ECM), designated “RoGel,” based on conditioned medium of human fibroblasts under serum- and xeno-free culture conditions is reported, which provides an attractive hPSC culture platform for both research and future therapeutic applications.
Abstract: Given the potential importance of human pluripotent stem cells (hPSCs) in translational research and regenerative medicine, the aim of the present study was to develop a simple, safe, and cost-effective substrate to expand hPSCs. We report the development of an extracellular matrix (ECM), designated “RoGel,” based on conditioned medium (CM) of human fibroblasts under serum- and xeno-free culture conditions. The long-term self-renewal of hPSCs on RoGel was also assessed. The results showed that self-renewal, pluripotency, plating efficiency, and cloning efficiency of hPSCs on this newly developed ECM were similar to those of Matrigel, the conventional mouse-cell line-derived ECM. The cells had the capability to passage mechanically on a cold surface, which resulted in their long-term maintenance with normal karyotype. We have demonstrated that CM-coated plates preserved for 1 year at room temperature maintained the capability of hPSC expansion. This ECM provides an attractive hPSC culture platform for both research and future therapeutic applications.

Journal Article
02 Jul 2013-Cell
TL;DR: This procedure has provided rapid, cost effective purification of a soluble hLIF protein that is biologically active and functional as measured in mouse ESCs and iPSCs in vitro.

Journal ArticleDOI
TL;DR: It is contended that the reestablishment of cellular interactions by the combination of nanomaterials and natural ECMs can be useful in maintaining in vitro islet functions.


Journal ArticleDOI
TL;DR: This study showed that DOX cardiotoxicity was reduced as detected by beating cardiomyocytes and caspase activity only by pretreatment with dexamethasone (DEX), not during or post-DOX treatment.
Abstract: Embryonic stem cells (ESCs) have various uses in drug toxicity, as they can be easily differentiated in vitro. However, one of the major obstacles in the assessment of these differentiated cells is the presence of a heterogeneous cell population. To circumvent this problem, purified ESC-derived desired cells by means of the tissue-specific GFP and/or antibiotic resistance gene expression has been proposed. Therefore, this study aimed to assess the role of doxorubicin (DOX) in cardiotoxicity by using genetically engineered purified ESC-derived cardiomyocytes under the control alpha-myosin heavy chain promoter. The results revealed that ESCs are suitable for evaluation of DOX cardiotoxicity. This study showed that DOX cardiotoxicity was reduced as detected by beating cardiomyocytes and caspase activity only by pretreatment with dexamethasone (DEX), not during or post-DOX treatment. DEX influence appears to be mediated via glucocorticoid receptor and enhances cardiomyocyte-specific gene expression. Therefore, for the general assessment of cytotoxicity, non-genetically engineered ESC-derived cardiomyocytes are sufficient but for the molecular assessment of DOX-induced toxicity, genetically engineered purified ESC-derived cardiomyocytes are necessary.

Journal Article
TL;DR: Retinoic acid induces in vitro neural induction along with neural patterning of ES-derived neural cells in DV and RC axes.
Abstract: Background: Retinoic acid (RA) is a vitamin A derivative and one of the most important inducing signals in vertebrates that is involved in differentiation, morphogenesis, apoptosis, and reproduction. This study was done to evaluate the role of RA in in vitro neural patterning of mouse embryonic stem cells (mESCs). Materials and Methods: In this experimental study, upon formation of embryoid bodies (EBs) from mESCs, Royan B1, they were induced by 1 µM RA for four days and then plated for eight days. Untreated EBs were considered as the control group. Finally, in both groups, neural induction and patterning of EB-derived neural cells were evaluated by using immunostaining, flowcytometry, and RT-PCR methods. Results: RA induced neurogenesis in ES cells, from which 35% showed to express MAP2. RT-PCR analysis also indicated that RA-treated neural cells derived from ES cells could at the same time express Mash1, Pax6/7, and Dbx1/2 as dorso-ventral (DV) pattering markers and Hoxb4, Hoxc5, and Hoxc8 as the rostro-caudal (RC) axis markers. Conclusion: RA induces in vitro neural induction along with neural patterning of ES-derived neural cells in DV and RC axes.

Journal ArticleDOI
15 Apr 2013-Gene
TL;DR: The inability of PEX7 protein to transport PTS2 containing proteins including peroxisomal 3-ketoacyl-CoA thiolase and PTS2-EGFP protein to the surface of the peroxISomes showed that the W75R mutation severely impaired the function of P EX7 protein and was responsible for RCDP type 1 in this patient.