scispace - formally typeset
Search or ask a question

Showing papers by "Jennifer L. Moran published in 2014"


Journal ArticleDOI
Stephan Ripke1, Stephan Ripke2, Benjamin M. Neale1, Benjamin M. Neale2  +351 moreInstitutions (102)
24 Jul 2014-Nature
TL;DR: Associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses.
Abstract: Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

6,809 citations


Journal ArticleDOI
TL;DR: Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death.
Abstract: Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent. Methods We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes. We identified somatic mutations on the basis of unusual allelic fractions. We used data from Swedish national patient registers to follow health outcomes for 2 to 7 years after DNA sampling. Results Clonal hematopoiesis with somatic mutations was observed in 10% of persons older than 65 years of age but in only 1% of those younger than 50 years of age. Detectable clonal expansions most frequently involved somatic mutations in three genes (DNMT3A, ASXL1, and TET2) that have previously been implicated in hematologic cancers. Clonal hematopoiesis was a strong risk factor for subsequent hematologic cancer (hazard ratio, 12.9; 95% confidence interval, 5.8 to 28.7). Approximately 42% of hematologic cancers in this cohort arose in persons who had clonality at the time of DNA sampling, more than 6 months before a first diagnosis of cancer. Analysis of bone marrow–biopsy specimens obtained from two patients at the time of diagnosis of acute myeloid leukemia revealed that their cancers arose from the earlier clones. Conclusions Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death. A subset of the genes that are mutated in patients with myeloid cancers is frequently mutated in apparently healthy persons; these mutations may represent characteristic early events in the development of hematologic cancers. (Funded by the National Human Genome Research Institute and others.)

2,497 citations


Journal ArticleDOI
13 Feb 2014-Nature
TL;DR: Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways, and pathophysiology shared with other neurodevelopmental disorders.
Abstract: Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case–control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.

1,501 citations


Journal ArticleDOI
13 Feb 2014-Nature
TL;DR: In this article, the exome sequences of 2,536 schizophrenia cases and 2,543 controls were analyzed and the authors demonstrated a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes.
Abstract: Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.

1,323 citations


Journal ArticleDOI
TL;DR: Support for the majority of the previously implicated CNVs in schizophrenia is strengthened and routine CNV screening may be clinically appropriate given the high rate of known deleterious mutations in the disorder and the comorbidity associated with these heritable mutations.
Abstract: Background A number of copy number variants (CNVs) have been suggested as susceptibility factors for schizophrenia. For some of these the data remain equivocal, and the frequency in individuals with schizophrenia is uncertain. Aims To determine the contribution of CNVs at 15 schizophreniaassociated loci (a) using a large new data-set of patients with schizophrenia (n = 6882) and controls (n = 6316), and (b) combining our results with those from previous studies. Method We used Illumina microarrays to analyse our data. Analyses were restricted to 520 766 probes common to all arrays used in the different data-sets. Results

384 citations


Journal ArticleDOI
TL;DR: The overall penetrance of SCZ-associated CNVs for developing any disorder is high, ranging between 10.6% and 100%, and the rates of nearly all CNVs are higher in DD/ASD/CM compared with SCZ.

331 citations


Journal ArticleDOI
TL;DR: Increases in burden of the largest CNVs in genes present in the postsynaptic density, in genomic regions implicated via SCZ genome-wide association studies and in gene products localized to mitochondria and cytoplasm suggest that multiple lines of genomic inquiry are converging on similar sets of pathways and/or genes.
Abstract: Schizophrenia (SCZ) is a highly heritable neuropsychiatric disorder of complex genetic etiology. Previous genome-wide surveys have revealed a greater burden of large, rare copy number variations (CNVs) in SCZ cases and identified multiple rare recurrent CNVs that increase risk of SCZ although with incomplete penetrance and pleiotropic effects. Identification of additional recurrent CNVs and biological pathways enriched for SCZ CNVs requires greater sample sizes. We conducted a genome-wide survey for CNVs associated with SCZ using a Swedish national sample (4719 cases and 5917 controls). High-confidence CNV calls were generated using genotyping array intensity data, and their effect on risk of SCZ was measured. Our data confirm increased burden of large, rare CNVs in SCZ cases as well as significant associations for recurrent 16p11.2 duplications, 22q11.2 deletions and 3q29 deletions. We report a novel association for 17q12 duplications (odds ratio=4.16, P=0.018), previously associated with autism and mental retardation but not SCZ. Intriguingly, gene set association analyses implicate biological pathways previously associated with SCZ through common variation and exome sequencing (calcium channel signaling and binding partners of the fragile X mental retardation protein). We found significantly increased burden of the largest CNVs (>500 kb) in genes present in the postsynaptic density, in genomic regions implicated via SCZ genome-wide association studies and in gene products localized to mitochondria and cytoplasm. Our findings suggest that multiple lines of genomic inquiry—genome-wide screens for CNVs, common variation and exonic variation—are converging on similar sets of pathways and/or genes.

248 citations


Journal ArticleDOI
TL;DR: It is shown that large duplications at 22q11.2—the reciprocal of the well-known, risk-inducing deletion of this locus—are substantially less common in schizophrenia cases than in the general population.
Abstract: A number of large, rare copy number variants (CNVs) are deleterious for neurodevelopmental disorders, but large, rare, protective CNVs have not been reported for such phenotypes. Here we show in a CNV analysis of 47 005 individuals, the largest CNV analysis of schizophrenia to date, that large duplications (1.5–3.0 Mb) at 22q11.2—the reciprocal of the well-known, risk-inducing deletion of this locus—are substantially less common in schizophrenia cases than in the general population (0.014% vs 0.085%, OR=0.17, P=0.00086). 22q11.2 duplications represent the first putative protective mutation for schizophrenia.

132 citations


Journal ArticleDOI
TL;DR: A burden analysis of large (>500 kb), rare CNVs showed a 1.2% excess in cases after excluding known schizophrenia-associated loci, suggesting that additional susceptibility loci exist, however, even larger samples are required for their discovery.
Abstract: Large and rare copy number variants (CNVs) at several loci have been shown to increase risk for schizophrenia. Aiming to discover novel susceptibility CNV loci, we analyzed 6882 cases and 11 255 controls genotyped on Illumina arrays, most of which have not been used for this purpose before. We identified genes enriched for rare exonic CNVs among cases, and then attempted to replicate the findings in additional 14 568 cases and 15 274 controls. In a combined analysis of all samples, 12 distinct loci were enriched among cases with nominal levels of significance (P 500 kb), rare CNVs showed a 1.2% excess in cases after excluding known schizophrenia-associated loci, suggesting that additional susceptibility loci exist. However, even larger samples are required for their discovery.

90 citations


Journal ArticleDOI
TL;DR: It is concluded that de noovo CNVs play a smaller role in BD compared with SZ, and patients with a positive family history can also harbour de novo mutations.
Abstract: An increased rate of de novo copy number variants (CNVs) has been found in schizophrenia (SZ), autism and developmental delay. An increased rate has also been reported in bipolar affective disorder (BD). Here, in a larger BD sample, we aimed to replicate these findings and compare de novo CNVs between SZ and BD. We used Illumina microarrays to genotype 368 BD probands, 76 SZ probands and all their parents. Copy number variants were called by PennCNV and filtered for frequency ( 10 kb). Putative de novo CNVs were validated with the z-score algorithm, manual inspection of log R ratios (LRR) and qPCR probes. We found 15 de novo CNVs in BD (4.1% rate) and 6 in SZ (7.9% rate). Combining results with previous studies and using a cut-off of >100 kb, the rate of de novo CNVs in BD was intermediate between controls and SZ: 1.5% in controls, 2.2% in BD and 4.3% in SZ. Only the differences between SZ and BD and SZ and controls were significant. The median size of de novo CNVs in BD (448 kb) was also intermediate between SZ (613 kb) and controls (338 kb), but only the comparison between SZ and controls was significant. Only one de novo CNV in BD was in a confirmed SZ locus (16p11.2). Sporadic or early onset cases were not more likely to have de novo CNVs. We conclude that de novo CNVs play a smaller role in BD compared with SZ. Patients with a positive family history can also harbour de novo mutations.

78 citations


Journal ArticleDOI
TL;DR: Screening of patients undergoing PICC placement with attention to malnutrition, BMI >30, and length of stay may reduce the risk of PicC-associated complications and enhance patient safety.
Abstract: BACKGROUND Peripherally inserted central catheters (PICCs) are increasingly utilized. Patient and system factors that increase risk of complications should be identified to avoid preventable patient harm. METHODS A case control analysis of adult inpatients who underwent PICC placement from January 2009 to January 2010 at Scott & White Memorial Hospital was conducted to determine the incidence and risk factors for complications. One hundred seventy cases of inpatients who experienced PICC-related complications were identified. Age- and gender-matched controls were randomly selected among patients who underwent PICC placement without documented complications during this time. RESULTS A total of 1444 PICCs were placed, with a complication rate of 11.77% (95% confidence interval: 10.11%-13.44%). Complications included catheter-associated thrombosis (3%), mechanical complications (4%), catheter-associated bloodstream infections (2%), and cellulitis (1%). In multivariable logistic regression analyses, malnutrition and after-hours placement were significantly associated with increased risk of complications, as was body mass index (BMI) >30 after adjusting for anticoagulation and time of placement. In a secondary multivariable logistic regression analysis, after-hours placement and malnutrition were significantly associated with increased risk of nonmechanical complications. Additionally, in conditional univariate analyses, length of stay, malnutrition, and after-hours placement were associated with increased risk of catheter-associated thrombosis. In our multivariable logistic regression analyses, use of anticoagulation/antiplatelet agents was associated with decreased risk of all-cause complications, nonmechanical complications, and catheter-associated thrombosis. CONCLUSIONS Screening of patients undergoing PICC placement with attention to malnutrition, BMI >30, and length of stay may reduce the risk of PICC-associated complications. Use of anticoagulation/antiplatelet agents and avoiding after-hours placement may reduce complications and enhance patient safety. Journal of Hospital Medicine 2014;9:481–489. © 2014 Society of Hospital Medicine

Journal Article
01 Jan 2014-Nature
TL;DR: It is demonstrated that chromosomal anomalies are present at low frequency in blood cells of both control and schizophrenia subjects, and a set of four extremely large chromosomal anomaly in subjects with schizophrenia is identified and validated.
Abstract: Recent reports suggest that somatic structural changes occur in the human genome, but how these genomic alterations might contribute to disease is unknown. Using samples collected as part of the International Schizophrenia Consortium (schizophrenia, n=3518; control, n=4238) recruited across multiple university research centers, we assessed single-nucleotide polymorphism genotyping arrays for evidence of chromosomal anomalies. Data from genotyping arrays on each individual were processed using Birdsuite and analyzed with PLINK. We validated potential chromosomal anomalies using custom nanostring probes and quantitative PCR. We estimate chromosomal alterations in the schizophrenia population to be 0.42%, which is not significantly different from controls (0.26%). We identified and validated a set of four extremely large (>10 Mb) chromosomal anomalies in subjects with schizophrenia, including a chromosome 8 trisomy and deletion of the q arm of chromosome 7. These data demonstrate that chromosomal anomalies are present at low frequency in blood cells of both control and schizophrenia subjects.