scispace - formally typeset
C

Christina M. Hultman

Researcher at Karolinska Institutet

Publications -  253
Citations -  63890

Christina M. Hultman is an academic researcher from Karolinska Institutet. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 80, co-authored 239 publications receiving 53735 citations. Previous affiliations of Christina M. Hultman include Uppsala University Hospital & Uppsala University.

Papers
More filters
Journal ArticleDOI

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek, +106 more
- 18 Aug 2016 - 
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Journal ArticleDOI

Biological insights from 108 schizophrenia-associated genetic loci

Stephan Ripke, +354 more
- 24 Jul 2014 - 
TL;DR: Associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses.
Journal ArticleDOI

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

Shaun Purcell, +81 more
- 06 Aug 2009 - 
TL;DR: The extent to which common genetic variation underlies the risk of schizophrenia is shown, using two analytic approaches, and the major histocompatibility complex is implicate, which is shown to involve thousands of common alleles of very small effect.
Journal ArticleDOI

Synaptic, transcriptional and chromatin genes disrupted in autism

Silvia De Rubeis, +99 more
- 13 Nov 2014 - 
TL;DR: Using exome sequencing, it is shown that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate of < 0.05, plus a set of 107 genes strongly enriched for those likely to affect risk (FDR < 0.30).