scispace - formally typeset
K

Kim I. Currie

Researcher at National Institute of Water and Atmospheric Research

Publications -  66
Citations -  6198

Kim I. Currie is an academic researcher from National Institute of Water and Atmospheric Research. The author has contributed to research in topics: Ocean acidification & Seawater. The author has an hindex of 26, co-authored 62 publications receiving 4812 citations. Previous affiliations of Kim I. Currie include University of Otago.

Papers
More filters
Journal ArticleDOI

Global Carbon Budget 2016

Corinne Le Quéré, +71 more
TL;DR: In this article, the authors quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community.
Journal ArticleDOI

Global Carbon Budget 2019

Pierre Friedlingstein, +88 more
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land use change, and show that the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere is a measure of imperfect data and understanding of the contemporary carbon cycle.
Journal ArticleDOI

Global Carbon Budget 2017

Corinne Le Quéré, +86 more
TL;DR: In this paper, the authors quantify the five major components of the global carbon budget and their uncertainties, and the resulting carbon budget imbalance (BIM) is a measure of imperfect data and understanding of the contemporary carbon cycle.
Journal ArticleDOI

A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

Dorothee C. E. Bakker, +103 more
TL;DR: This ESSD "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection.
Journal ArticleDOI

A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification

TL;DR: In this article, the long-term changes in dissolved inorganic carbon (DIC), salinity-normalized DIC, and surface seawater pCO2 (partial pressure of CO2) due to the uptake of anthropogenic CO2 and its impact on the ocean's buffering capacity are discussed.