scispace - formally typeset
Search or ask a question

Showing papers by "L. Aravind published in 2020"


Journal ArticleDOI
29 May 2020-Mbio
TL;DR: It is proposed that SARS-CoV-2 ORF8 and other previously unidentified CoV Igdomain proteins fall under the umbrella of a widespread strategy of deployment of Ig domain proteins in animal viruses as pathogenicity factors that modulate host immunity.
Abstract: A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was recently identified as the causative agent for the coronavirus disease 2019 (COVID-19) outbreak that has generated a global health crisis. We use a combination of genomic analysis and sensitive profile-based sequence and structure analysis to understand the potential pathogenesis determinants of this virus. As a result, we identify several fast-evolving genomic regions that might be at the interface of virus-host interactions, corresponding to the receptor binding domain of the Spike protein, the three tandem Macro fold domains in ORF1a, and the uncharacterized protein ORF8. Further, we show that ORF8 and several other proteins from alpha- and beta-CoVs belong to novel families of immunoglobulin (Ig) proteins. Among them, ORF8 is distinguished by being rapidly evolving, possessing a unique insert, and having a hypervariable position among SARS-CoV-2 genomes in its predicted ligand-binding groove. We also uncover numerous Ig domain proteins from several unrelated metazoan viruses, which are distinct in sequence and structure but share comparable architectures to those of the CoV Ig domain proteins. Hence, we propose that SARS-CoV-2 ORF8 and other previously unidentified CoV Ig domain proteins fall under the umbrella of a widespread strategy of deployment of Ig domain proteins in animal viruses as pathogenicity factors that modulate host immunity. The rapid evolution of the ORF8 Ig domain proteins points to a potential evolutionary arms race between viruses and hosts, likely arising from immune pressure, and suggests a role in transmission between distinct host species.IMPORTANCE The ongoing COVID-19 pandemic strongly emphasizes the need for a more complete understanding of the biology and pathogenesis of its causative agent SARS-CoV-2. Despite intense scrutiny, several proteins encoded by the genomes of SARS-CoV-2 and other SARS-like coronaviruses remain enigmatic. Moreover, the high infectivity and severity of SARS-CoV-2 in certain individuals make wet-lab studies currently challenging. In this study, we used a series of computational strategies to identify several fast-evolving regions of SARS-CoV-2 proteins which are potentially under host immune pressure. Most notably, the hitherto-uncharacterized protein encoded by ORF8 is one of them. Using sensitive sequence and structural analysis methods, we show that ORF8 and several other proteins from alpha- and beta-coronavirus comprise novel families of immunoglobulin domain proteins, which might function as potential immune modulators to delay or attenuate the host immune response against the viruses.

69 citations


Journal ArticleDOI
TL;DR: This work identifies NONU-1 as a factor required for translation surveillance pathways including no-go and nonstop mRNA decay and establishes the identity of a factor critical to translation surveillance and will inform mechanistic studies at the intersection of translation and mRNA decay.

44 citations


Journal ArticleDOI
TL;DR: The puzzle of whether DNA methylation was reversible remained unclear for many decades until the discovery of the TET (Ten-Eleven Translocation) family of 5-methylcytosine oxidases, which use reduced iron, molecular oxygen and the tricarboxylic acid cycle metabolite 2-oxoglutarate to oxidise the methyl group of 5mC to 5-hydroxymethylcyTosine (5hmC) and beyond.
Abstract: In mammals, DNA methyltransferases transfer a methyl group from S-adenosylmethionine to the 5 position of cytosine in DNA. The product of this reaction, 5-methylcytosine (5mC), has many roles, particularly in suppressing transposable and repeat elements in DNA. Moreover, in many cellular systems, cell lineage specification is accompanied by DNA demethylation at the promoters of genes expressed at high levels in the differentiated cells. However, since direct cleavage of the C-C bond connecting the methyl group to the 5 position of cytosine is thermodynamically disfavoured, the question of whether DNA methylation was reversible remained unclear for many decades. This puzzle was solved by our discovery of the TET (Ten- Eleven Translocation) family of 5-methylcytosine oxidases, which use reduced iron, molecular oxygen and the tricarboxylic acid cycle metabolite 2-oxoglutarate (also known as a-ketoglutarate) to oxidise the methyl group of 5mC to 5-hydroxymethylcytosine (5hmC) and beyond. TET-generated oxidised methylcytosines are intermediates in at least two pathways of DNA demethylation, which differ in their dependence on DNA replication. In the decade since their discovery, TET enzymes have been shown to have important roles in embryonic development, cell lineage specification, neuronal function and cancer. We review these findings and discuss their implications here.

40 citations


Journal ArticleDOI
TL;DR: 12 new prokaryotic immune systems are identified, which are unify by this principle of threshold-dependent effector activation, which is established to be a more general principle of immune systems, which can also operate independently of such messengers.
Abstract: Nucleotide-activated effector deployment, prototyped by interferon-dependent immunity, is a common mechanistic theme shared by immune systems of several animals and prokaryotes. Prokaryotic versions include CRISPR-Cas with the CRISPR polymerase domain, their minimal variants, and systems with second messenger oligonucleotide or dinucleotide synthetase (SMODS). Cyclic or linear oligonucleotide signals in these systems help set a threshold for the activation of potentially deleterious downstream effectors in response to invader detection. We establish such a regulatory mechanism to be a more general principle of immune systems, which can also operate independently of such messengers. Using sensitive sequence analysis and comparative genomics, we identify 12 new prokaryotic immune systems, which we unify by this principle of threshold-dependent effector activation. These display regulatory mechanisms paralleling physiological signaling based on 3'-5' cyclic mononucleotides, NAD+-derived messengers, two- and one-component signaling that includes histidine kinase-based signaling, and proteolytic activation. Furthermore, these systems allowed the identification of multiple new sensory signal sensory components, such as a tetratricopeptide repeat (TPR) scaffold predicted to recognize NAD+-derived signals, unreported versions of the STING domain, prokaryotic YEATS domains, and a predicted nucleotide sensor related to receiver domains. We also identify previously unrecognized invader detection components and effector components, such as prokaryotic versions of the Wnt domain. Finally, we show that there have been multiple acquisitions of unidentified STING domains in eukaryotes, while the TPR scaffold was incorporated into the animal immunity/apoptosis signal-regulating kinase (ASK) signalosome.IMPORTANCE Both prokaryotic and eukaryotic immune systems face the dangers of premature activation of effectors and degradation of self-molecules in the absence of an invader. To mitigate this, they have evolved threshold-setting regulatory mechanisms for the triggering of effectors only upon the detection of a sufficiently strong invader signal. This work defines general templates for such regulation in effector-based immune systems. Using this, we identify several previously uncharacterized prokaryotic immune mechanisms that accomplish the regulation of downstream effector deployment by using nucleotide, NAD+-derived, two-component, and one-component signals paralleling physiological homeostasis. This study has also helped identify several previously unknown sensor and effector modules in these systems. Our findings also augment the growing evidence for the emergence of key animal immunity and chromatin regulatory components from prokaryotic progenitors.

40 citations


Journal ArticleDOI
TL;DR: It is shown here that Hmces-deficient mice display normal hematopoiesis without global alterations in 5hmC, and a potential structural basis for the interaction of HMCES with long DNA overhangs generated by Alt-EJ during CSR is provided.

31 citations


Journal ArticleDOI
TL;DR: A unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism are presented.
Abstract: ABC ATPases form one of the largest clades of P-loop NTPase fold enzymes that catalyze ATP-hydrolysis and utilize its free energy for a staggering range of functions from transport to nucleoprotein dynamics. Using sensitive sequence and structure analysis with comparative genomics, for the first time we provide a comprehensive classification of the ABC ATPase superfamily. ABC ATPases developed structural hallmarks that unambiguously distinguish them from other P-loop NTPases such as an alternative to arginine-finger-based catalysis. At least five and up to eight distinct clades of ABC ATPases are reconstructed as being present in the last universal common ancestor. They underwent distinct phases of structural innovation with the emergence of inserts constituting conserved binding interfaces for proteins or nucleic acids and the adoption of a unique dimeric toroidal configuration for DNA-threading. Specifically, several clades have also extensively radiated in counter-invader conflict systems where they serve as nodal nucleotide-dependent sensory and energetic components regulating a diversity of effectors (including some previously unrecognized) acting independently or together with restriction-modification systems. We present a unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism.

29 citations


Journal ArticleDOI
26 Feb 2020-eLife
TL;DR: The discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes are reported, arguing for both a similar operational ‘grammar’ and shared protein domains in the sensing and limiting of infections during the multiple emergences ofMulticellularity.
Abstract: Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.

27 citations


Journal ArticleDOI
TL;DR: In this paper, the CARF-associated Rossman fold (CARF)-binding regulatory domain is used to regulate operon expression in Salmonella enterica serovar Typhimurium, showing that the operon is expressed in the presence of mutations that cause tRNA fragments to accumulate.

23 citations


Journal ArticleDOI
TL;DR: A forward genetic scheme was devised and implemented to identify factors required for H3K27 methylation-mediated silencing in the filamentous fungus Neurospora crassa and identified a bromo-adjacent homology (BAH)-plant homeodomain (PHD)-containing protein, EPR-1 (effector of polycomb repression 1; NCU07505).
Abstract: Methylation of histone H3 lysine 27 (H3K27) is widely recognized as a transcriptionally repressive chromatin modification but the mechanism of repression remains unclear. We devised and implemented a forward genetic scheme to identify factors required for H3K27 methylation-mediated silencing in the filamentous fungus Neurospora crassa and identified a bromo-adjacent homology (BAH)-plant homeodomain (PHD)-containing protein, EPR-1 (effector of polycomb repression 1; NCU07505). EPR-1 associates with H3K27-methylated chromatin, and loss of EPR-1 de-represses H3K27-methylated genes without loss of H3K27 methylation. EPR-1 is not fungal-specific; orthologs of EPR-1 are present in a diverse array of eukaryotic lineages, suggesting an ancestral EPR-1 was a component of a primitive Polycomb repression pathway.

23 citations


Journal ArticleDOI
TL;DR: It is shown that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells and can arise from biochemical mechanisms that calibrate morphogen signaling strength.

20 citations


Posted ContentDOI
07 Mar 2020-bioRxiv
TL;DR: It is proposed that deployment of Ig domain proteins is a widely-used strategy by viruses, and SARS-CoV-2 ORF8 is a potential pathogenicity factor which evolves rapidly to counter the immune response and facilitate the transmission between hosts.
Abstract: A novel coronavirus (SARS-CoV-2) is the causative agent of an emergent severe respiratory disease (COVID-19) in humans that is threatening to result in a global health crisis. By using genomic, sequence, structural and evolutionary analysis, we show that Alpha- and Beta-CoVs possess several novel families of immunoglobulin (Ig) domain proteins, including ORF8 and ORF7a from SARS-related coronaviruses and two protein groups from certain Alpha-CoVs. Among them, ORF8 is distinguished in being rapidly evolving, possessing a unique insert and a hypervariable position among SARS-CoV-2 genomes in its predicted ligand-binding groove. We also uncover many Ig proteins from several metazoan viruses which are distinct in sequence and structure but share an architecture comparable to that of CoV Ig domain proteins. Hence, we propose that deployment of Ig domain proteins is a widely-used strategy by viruses, and SARS-CoV-2 ORF8 is a potential pathogenicity factor which evolves rapidly to counter the immune response and facilitate the transmission between hosts.

Journal ArticleDOI
TL;DR: Heterologous expression of the GBS cyl operon conferred hemolysis, pigmentation, and cytoxicity to Lactococcus lactis, a model non-hemolytic Gram-positive bacterium, indicating the cylOperon is sufficient for Granadaene production in a heterologous host.
Abstract: Group B Streptococcus (GBS) is a β-hemolytic, Gram-positive bacterium that commonly colonizes the female lower genital tract and is associated with fetal injury, preterm birth, spontaneous abortion, and neonatal infections. A major factor promoting GBS virulence is the β-hemolysin/cytolysin, which is cytotoxic to several host cells. We recently showed that the ornithine rhamnolipid pigment, Granadaene, produced by the gene products of the cyl operon, is hemolytic. Here, we demonstrate that heterologous expression of the GBS cyl operon conferred hemolysis, pigmentation, and cytoxicity to Lactococcus lactis, a model non-hemolytic Gram-positive bacterium. Similarly, pigment purified from L. lactis is hemolytic, cytolytic, and identical in structure to Granadaene extracted from GBS, indicating the cyl operon is sufficient for Granadaene production in a heterologous host. Using a systematic survey of phyletic patterns and contextual associations of the cyl genes, we identify homologs of the cyl operon in physiologically diverse Gram-positive bacteria and propose undescribed functions of cyl gene products. Together, these findings bring greater understanding to the biosynthesis and evolutionary foundations of a key GBS virulence factor and suggest that such potentially toxic lipids may be encoded by other bacteria.

Journal ArticleDOI
TL;DR: Using genome-wide immunoscreening and extensive computational sequence and bioinformatics analyses and cellular localization studies, the domain architectures, potential biological functions, and evolutionary relationships of the most immunodominant B. microti antigens are clarified and can be evaluated to develop novel assays and candidate vaccines.
Abstract: Babesia microti is an intraerythrocytic parasite and the primary causative agent of human babesiosis. It is transmitted by Ixodes ticks, transfusion of blood and blood products, organ donation, and perinatally. Despite its global public health impact, limited progress has been made to identify and characterize immunodominant B. microti antigens for diagnostic and vaccine use. Using genome-wide immunoscreening, we identified 56 B. microti antigens, including some previously uncharacterized antigens. Thirty of the most immunodominant B. microti antigens were expressed as recombinant proteins in E. coli. Among these, the combined use of two novel antigens and one previously described antigen provided 96% sensitivity and 100% specificity in identifying B. microti antibody containing sera in an ELISA. Using extensive computational sequence and bioinformatics analyses and cellular localization studies, we have clarified the domain architectures, potential biological functions, and evolutionary relationships of the most immunodominant B. microti antigens. Notably, we found that the BMN-family antigens are not monophyletic as currently annotated, but rather can be categorized into two evolutionary unrelated groups of BMN proteins respectively defined by two structurally distinct classes of extracellular domains. Our studies have enhanced the repertoire of immunodominant B. microti antigens, and assigned potential biological function to these antigens, which can be evaluated to develop novel assays and candidate vaccines.

Journal ArticleDOI
TL;DR: It is shown for the first time that the Ca2+-stores system of the endoplasmic reticulum contains previously unidentified Sel1, EF-hand, and OB-fold domains, which might have key roles in its biochemistry.
Abstract: The origin of eukaryotes was marked by the emergence of several novel subcellular systems. One such is the calcium (Ca2+)-stores system of the endoplasmic reticulum, which profoundly influences diverse aspects of cellular function including signal transduction, motility, division, and biomineralization. We use comparative genomics and sensitive sequence and structure analyses to investigate the evolution of this system. Our findings reconstruct the core form of the Ca2+-stores system in the last eukaryotic common ancestor as having at least 15 proteins that constituted a basic system for facilitating both Ca2+ flux across endomembranes and Ca2+-dependent signaling. We present evidence that the key EF-hand Ca2+-binding components had their origins in a likely bacterial symbiont other than the mitochondrial progenitor, whereas the protein phosphatase subunit of the ancestral calcineurin complex was likely inherited from the asgard archaeal progenitor of the stem eukaryote. This further points to the potential origin of the eukaryotes in a Ca2+-rich biomineralized environment such as stromatolites. We further show that throughout eukaryotic evolution there were several acquisitions from bacteria of key components of the Ca2+-stores system, even though no prokaryotic lineage possesses a comparable system. Further, using quantitative measures derived from comparative genomics we show that there were several rounds of lineage-specific gene expansions, innovations of novel gene families, and gene losses correlated with biological innovation such as the biomineralized molluscan shells, coccolithophores, and animal motility. The burst of innovation of new genes in animals included the wolframin protein associated with Wolfram syndrome in humans. We show for the first time that it contains previously unidentified Sel1, EF-hand, and OB-fold domains, which might have key roles in its biochemistry.

Journal ArticleDOI
25 Aug 2020-Mbio
TL;DR: It is proposed that Rv0991c, which is named “Ruc” (redox-regulated protein with unstructured C terminus), represents a founding member of a new chaperone family that protects M. tuberculosis and other species from proteotoxicity during oxidative stress.
Abstract: The bacterial pathogen Mycobacterium tuberculosis is the leading cause of death by an infectious disease among humans. Here, we describe a previously uncharacterized M. tuberculosis protein, Rv0991c, as a molecular chaperone that is activated by oxidation. Rv0991c has homologs in most bacterial lineages and appears to function analogously to the well-characterized Escherichia coli redox-regulated chaperone Hsp33, despite a dissimilar protein sequence. Rv0991c is transcriptionally coregulated with hsp60 and hsp70 chaperone genes in M. tuberculosis, suggesting that Rv0991c functions with these chaperones in maintaining protein quality control. Supporting this hypothesis, we found that, like oxidized Hsp33, oxidized Rv0991c prevents the aggregation of a model unfolded protein in vitro and promotes its refolding by the M. tuberculosis Hsp70 chaperone system. Furthermore, Rv0991c interacts with DnaK and can associate with many other M. tuberculosis proteins. We therefore propose that Rv0991c, which we named “Ruc” (redox-regulated protein with unstructured C terminus), represents a founding member of a new chaperone family that protects M. tuberculosis and other species from proteotoxicity during oxidative stress. IMPORTANCEM. tuberculosis infections are responsible for more than 1 million deaths per year. Developing effective strategies to combat this disease requires a greater understanding of M. tuberculosis biology. As in all cells, protein quality control is essential for the viability of M. tuberculosis, which likely faces proteotoxic stress within a host. Here, we identify an M. tuberculosis protein, Ruc, that gains chaperone activity upon oxidation. Ruc represents a previously unrecognized family of redox-regulated chaperones found throughout the bacterial superkingdom. Additionally, we found that oxidized Ruc promotes the protein-folding activity of the essential M. tuberculosis Hsp70 chaperone system. This work contributes to a growing body of evidence that oxidative stress provides a particular strain on cellular protein stability.

Posted ContentDOI
25 Sep 2020-bioRxiv
TL;DR: A computational pipeline for comparative genomics and protein sequence-structure-function analyses was developed to identify sequence homologs, phyletic patterns, domain architectures, gene neighborhoods, and evolution of the candidates across the tree of life, enabling several new discoveries.
Abstract: The phage shock protein (Psp) stress-response system protects bacteria from envelope stress and stabilizes the cell membrane. Recent work from our group suggests that the psp systems have evolved independently in distinct Gram-positive and Gram-negative bacterial clades to effect similar stress response functions. Despite the prevalence of the key effector, PspA, and the functional Psp system, the various genomic contexts of Psp proteins, as well as their evolution across the kingdoms of life, have not yet been characterized. We have developed a computational pipeline for comparative genomics and protein sequence-structure-function analyses to identify sequence homologs, phyletic patterns, domain architectures, gene neighborhoods, and evolution of the candidates across the tree of life. This integrative pipeline enabled us to make several new discoveries, including the truly universal nature of PspA and the ancestry of the PspA/Snf7 dating all the way back to the Last Universal Common Ancestor. Using contextual information from conserved gene neighborhoods and their domain architectures, we delineated the phyletic patterns of all the Psp members. Next, we systematically identified all possible ‘flavors’ and genomic neighborhoods of the Psp systems. Finally, we traced their evolution, leading us to several interesting findings of their occurrence and co-migration that together point to the functions and roles of Psp in stress-response systems that are often lineage-specific. Conservation of the Psp systems across bacterial phyla emphasizes the established importance of this stress response system in prokaryotes, while the modularity in various lineages is indicative of adaptation to bacteria-specific cell-envelope structures, lifestyles, and adaptation strategies. We also developed an interactive web application that hosts all the data and results in this study that researchers can explore (https://jravilab.shinyapps.io/psp-evolution).

Posted ContentDOI
11 Nov 2020-bioRxiv
TL;DR: It is shown that the M and ORF3 are under differential evolutionary pressures; in contrast to the slow evolution of M as core structural component, the CoV-ORF3 clade is under selection for diversification, which indicates it is likely at the interface with host molecules and/or immune attack.
Abstract: The new coronavirus, SARS-CoV-2, responsible for the COVID-19 pandemic has emphasized the need for a better understanding of the evolution of virus-host conflicts. ORF3a in both SARS-CoV-1 and SARS-CoV-2 are ion channels (viroporins) and involved in virion assembly and membrane budding. Using sensitive profile-based homology detection methods, we unify the SARS-CoV ORF3a family with several families of viral proteins, including ORF5 from MERS-CoVs, proteins from beta-CoVs (ORF3c), alpha-CoVs (ORF3b), most importantly, the Matrix (M) proteins from CoVs, and more distant homologs from other nidoviruses. By sequence analysis and structural modeling, we show that these viral families utilize specific conserved polar residues to constitute an ion-conducting pore in the membrane. We reconstruct the evolutionary history of these families, objectively establish the common origin of the M proteins of CoVs and Toroviruses. We show that the divergent ORF3a/ORF3b/ORF5 families represent a duplication stemming from the M protein in alpha- and beta-CoVs. By phyletic profiling of major structural components of primary nidoviruses, we present a model for their role in virion assembly of CoVs, ToroVs and Arteriviruses. The unification of diverse M/ORF3 ion channel families in a wide range of nidoviruses, especially the typical M protein in CoVs, reveal a conserved, previously under-appreciated role of ion channels in virion assembly, membrane fusion and budding. We show that the M and ORF3 are under differential evolutionary pressures; in contrast to the slow evolution of M as core structural component, the CoV-ORF3 clade is under selection for diversification, which indicates it is likely at the interface with host molecules and/or immune attack. IMPORTANCE Coronaviruses (CoVs) have become a major threat to human welfare as the causative agents of several severe infectious diseases, namely Severe Acute Respiratory Syndrome (SARS), Middle Eastern Respiratory Syndrome (MERS), and the recently emerging human coronavirus disease 2019 (COVID-19). The rapid spread, severity of these diseases, as well as the potential re-emergence of other CoV-associated diseases have imposed a strong need for a thorough understanding of function and evolution of these CoVs. By utilizing robust domain-centric computational strategies, we have established homologous relationships between many divergent families of CoV proteins, including SARS-CoV/SARS-CoV-2 ORF3a, MERS-CoV ORF5, proteins from both beta-CoVs (ORF3c) and alpha-CoVs (ORF3b), the typical CoV Matrix proteins, and many distant homologs from other nidoviruses. We present evidence that they are active ion channel proteins, and the Cov-specific ORF3 clade proteins are under selection for rapid diversification, suggesting they might have been involved in interfering host molecules and/or immune attack.

Posted ContentDOI
26 May 2020-bioRxiv
TL;DR: It is shown that genetic interactions between components of a receptor-like ubiquitin ligase complex that tunes morphogen signaling strength can cause a birth defect syndrome inherited in an oligogenic pattern.
Abstract: The etiology of congenital heart defects (CHDs), amongst the most common human birth defects, is poorly understood partly because of its complex genetic architecture. Here we show that two genes previously implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a single-pass transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a transmembrane ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions between components of a receptor-like ubiquitin ligase complex that tunes morphogen signaling strength can cause a birth defect syndrome inherited in an oligogenic pattern.

Posted ContentDOI
07 Mar 2020-bioRxiv
TL;DR: It is proposed that Rv0991c, which is named “Ruc” (redox-regulated protein with unstructured C-terminus), represents a founding member of a new chaperone family that protects M. tuberculosis and other species from proteotoxicity during oxidative stress and contributes to a growing appreciation that oxidative stress may provide a particular strain on protein stability in cells, and may likewise play a role in M.culosis pathogenesis.
Abstract: The bacterial pathogen Mycobacterium (M.) tuberculosis is the leading cause of death by an infectious disease among humans. Here, we describe a previously uncharacterized M. tuberculosis protein, Rv0991c, as a molecular chaperone that is activated by oxidation. Rv0991c has homologues in most bacterial lineages and appears to function analogously to the well-characterized Escherichia coli redox-regulated chaperone Hsp33, despite a dissimilar protein sequence. Rv0991c is transcriptionally co-regulated with hsp60 and hsp70 chaperone genes in M. tuberculosis, suggesting that Rv0991c functions with these chaperones in maintaining protein quality control. Supporting this hypothesis, we found that, like oxidized Hsp33, oxidized Rv0991c prevents the aggregation of a model unfolded protein in vitro, and promotes its refolding by the M. tuberculosis Hsp70 chaperone system. Furthermore, Rv0991c interacts with DnaK and associates with many other M. tuberculosis proteins. Importantly, we found Rv0991c is required for the full virulence of M. tuberculosis in mice. We therefore propose that Rv0991c, which we named "Ruc" (redox-regulated protein with unstructured C-terminus), represents a founding member of a new chaperone family that protects M. tuberculosis and other species from proteotoxicity during oxidative stress.