scispace - formally typeset
Search or ask a question

Showing papers by "Marco Narici published in 2021"


Journal ArticleDOI
TL;DR: Low to medium-intensity high volume resistive exercise, easily implementable in home-settings, will have positive effects, particularly if combined with a 15–25% reduction in daily energy intake, which seems ideal for preserving neuromuscular, metabolic and cardiovascular health.
Abstract: The COVID-19 pandemic is an unprecedented health crisis as entire populations have been asked to self-isolate and live in home-confinement for several weeks to months, which in itself represents a physiological challenge with significant health risks. This paper describes the impact of sedentarism on the human body at the level of the muscular, cardiovascular, metabolic, endocrine and nervous systems and is based on evidence from several models of inactivity, including bed rest, unilateral limb suspension, and step-reduction. Data form these studies show that muscle wasting occurs rapidly, being detectable within two days of inactivity. This loss of muscle mass is associated with fibre denervation, neuromuscular junction damage and upregulation of protein breakdown, but is mostly explained by the suppression of muscle protein synthesis. Inactivity also affects glucose homeostasis as just few days of step reduction or bed rest, reduce insulin sensitivity, principally in muscle. Additionally, aerobic capacity is impaired at all levels of the O2 cascade, from the cardiovascular system, including peripheral circulation, to skeletal muscle oxidative function. Positive energy balance during physical inactivity is associated with fat deposition, associated with systemic inflammation and activation of antioxidant defences, exacerbating muscle loss. Importantly, these deleterious effects of inactivity can be diminished by routine exercise practice, but the exercise dose-response relationship is currently unknown. Nevertheless, low to medium-intensity high volume resistive exercise, easily implementable in home-settings, will have positive effects, particularly if combined with a 15-25% reduction in daily energy intake. This combined regimen seems ideal for preserving neuromuscular, metabolic and cardiovascular health.Highlights This paper describes the impact of sedentarism, caused by the COVID-19 home confinement on the neuromuscular, cardiovascular, metabolic and endocrine systems.Just few days of sedentary lifestyle are sufficient to induce muscle loss, neuromuscular junction damage and fibre denervation, insulin resistance, decreased aerobic capacity, fat deposition and low-grade systemic inflammation.Regular low/medium intensity high volume exercise, together with a 15-25% reduction in caloric intake are recommended for preserving neuromuscular, cardiovascular, metabolic and endocrine health.

286 citations


Journal ArticleDOI
TL;DR: In this article, the early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation-contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Abstract: KEY POINTS Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation-contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading. ABSTRACT Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)-positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C-terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross-sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation-contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading.

50 citations


Journal ArticleDOI
TL;DR: In this article, the authors present the principal US measures and field of applications in the context of elite sports; discuss, from a methodological perspective, the strengths and shortcomings of US imaging for the assessment of muscle and tendon properties; and provide future directions for research and application.
Abstract: Ultrasound (US) imaging has been widely used in both research and clinical settings to evaluate the morphological and mechanical properties of muscle and tendon. In elite sports scenarios, a regular assessment of such properties has great potential, namely for testing the response to training, detecting athletes at higher risks of injury, screening athletes for structural abnormalities related to current or future musculoskeletal complaints, and monitoring their return to sport after a musculoskeletal injury. However, several practical and methodological aspects of US techniques should be considered when applying this technology in the elite sports context. Therefore, this narrative review aims to (1) present the principal US measures and field of applications in the context of elite sports; (2) to discuss, from a methodological perspective, the strengths and shortcomings of US imaging for the assessment of muscle and tendon properties; and (3) to provide future directions for research and application.

31 citations


Journal ArticleDOI
TL;DR: This review aimed to establish the current standpoint on age-related NMJ deterioration and consequences for skeletal muscle, while illuminating a role for biomarkers and exercise in ameliorating these alterations.
Abstract: Age-related skeletal muscle degradation known as "sarcopenia" exerts considerable strain on public health systems globally. While the pathogenesis of such atrophy is undoubtedly multifactorial, disruption at the neuromuscular junction (NMJ) has recently gained traction as a key explanatory factor. The NMJ, an essential communicatory link between nerve and muscle, undergoes profound changes with advancing age. Ascertaining whether such changes potentiate the onset of sarcopenia would be paramount in facilitating a timely implementation of targeted therapeutic strategies. Hence, there is a growing level of importance to further substantiate the effects of age on NMJs, in parallel with developing measures to attenuate such changes. As such, this review aimed to establish the current standpoint on age-related NMJ deterioration and consequences for skeletal muscle, while illuminating a role for biomarkers and exercise in ameliorating these alterations. Recent insights into the importance of key biomarkers for NMJ stability are provided, while the stimulative benefits of exercise in preserving NMJ function are demonstrated. Further elucidation of the diagnostic and prognostic relevance of biomarkers, coupled with the therapeutic benefits of regular exercise may be crucial in combating age-related NMJ and skeletal muscle degradation.

27 citations


Journal ArticleDOI
TL;DR: In this article, the authors contributed to the characterization of muscle loss and weakness processes reflected by a logarithmic decline in muscle strength induced by chronic bed rest in acute short-term hospitalization.
Abstract: Our study contributes to the characterization of muscle loss and weakness processes reflected by a logarithmic decline in muscle strength induced by chronic bed rest. Acute short-term hospitalizati...

26 citations


Journal ArticleDOI
TL;DR: In this article, an ultrasound imaging method for diagnosing sarcopenia based on changes in muscle geometric proportions was introduced for the first time, which is a useful clinical tool for confirming the diagnosis of muscle mass.
Abstract: BACKGROUND The assessment of muscle mass is a key determinant of the diagnosis of sarcopenia. We introduce for the first time an ultrasound imaging method for diagnosing sarcopenia based on changes in muscle geometric proportions. METHODS Vastus lateralis muscle fascicle length (Lf) and thickness (Tm) were measured at 35% distal femur length by ultrasonography in a population of 279 individuals classified as moderately active elderly (MAE), sedentary elderly (SE) (n = 109), mobility impaired elderly (MIE) (n = 43), and in adult young controls (YC) (n = 60). The ratio of Lf/Tm was calculated to obtain an ultrasound index of the loss of muscle mass associated with sarcopenia (USI). In a subsample of elderly male individuals (n = 76) in which corresponding DXA measurements were available (MAE, n = 52 and SE, n = 24), DXA-derived skeletal muscle index (SMI, appendicular limb mass/height2 ) was compared with corresponding USI values. RESULTS For both young and older participants, USI values were found to be independent of sex, height and body mass. USI values were 3.70 ± 0.52 for YC, 4.50 ± 0.72 for the MAE, 5.05 ± 1.11 for the SE and 6.31 ± 1.38 for the MIE, all significantly different between each other (P 5.82 were classified as severely sarcopenic (prevalence 9.6%). The DXA-derived SMI was found to be significantly correlated with USI (r = 0.61, P < 0.0001). Notably, the USI cut-off value for moderate sarcopenia (4.76 a.u.) was found to coincide with the DXA cut-off value of sarcopenia (7.26 kg/m2 ). CONCLUSIONS We propose a novel, practical, and inexpensive imaging marker of the loss of muscle mass associated with sarcopenia, called the ultrasound sarcopenic index (USI), based on changes in muscle geometric proportions. These changes provide a useful 'signature of sarcopenia' and allow the stratification of individuals according to the presence and severity of muscle sarcopenia. We are convinced that the USI will be a useful clinical tool for confirming the diagnosis of sarcopenia, of which the assessment of muscle mass is a key-component.

24 citations


Journal ArticleDOI
02 Jul 2021
TL;DR: In this paper, a study aimed to establish normative data and low grip strength thresholds in a large adult population, and to examine associations between grip strength and clinically relevant health variables, such as lean mass, skeletal muscle index (SMI), fat mass, CR fitness, bone mineral density (BMD), android/gynoid ratio, disease prevalence and physical activity levels.
Abstract: Weak grip strength is a strong predictor of multiple adverse health outcomes and an integral diagnostic component of sarcopenia. However, the limited availability of normative data for certain populations impedes the interpretation of grip performance across adulthood. This study aimed to establish normative data and low grip strength thresholds in a large adult population, and to examine associations between grip strength and clinically relevant health variables. A total of 9431 adults aged between 18 and 92 years participated in this study (mean age: 44.8 ± 13.4 years; 57% females). Grip strength, body composition, and cardiorespiratory (CR) fitness were assessed using hand dynamometry, dual-energy x-ray absorptiometry and physical work capacity tests, respectively. Low grip strength was established according to criteria of the European Working Group on Sarcopenia in Older People. Normative data and t-scores, stratified by sex and age groups, are presented. Grip performance was associated with lean mass, skeletal muscle index (SMI), fat mass, CR fitness, bone mineral density (BMD), android/gynoid ratio, disease prevalence and physical activity levels (all p < 0.001) after controlling for multiple potential confounders. Individuals with weak grip strength had lower lean mass, SMI, CR fitness (all p < 0.001) and BMD (p = 0.001), and higher disease prevalence (p < 0.001), compared to healthy controls, although sex-specific differences were observed. Grip strength has practical screening utility across a range of health domains. The normative data and grip strength thresholds established in this study can guide the clinical interpretation of grip performance and facilitate timely therapeutic strategies targeting sarcopenia.

18 citations


Journal ArticleDOI
TL;DR: In this article, 10 males performed an incremental exercise (to determine peak pulmonary VO2 (VO2 p)) and moderate-intensity exercises, before (PRE) and after (POST) bed rest.
Abstract: In order to identify peripheral biomarkers of impaired oxidative metabolism during exercise following a 10-day bed rest, 10 males performed an incremental exercise (to determine peak pulmonary VO2 (VO2 p)) and moderate-intensity exercises, before (PRE) and after (POST) bed rest. Blood flow response was evaluated in the common femoral artery by Eco-Doppler during 1 min of passive leg movements (PLM). The intramuscular matching between O2 delivery and O2 utilization was evaluated by near-infrared spectroscopy (NIRS). Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in isolated muscle fibres, and in vivo by NIRS by the evaluation of skeletal muscle VO2 (VO2 m) recovery kinetics. Resting VO2 m was estimated by NIRS. Peak VO2 p was lower in POST vs. PRE. The area under the blood flow vs. time curve during PLM was smaller (P = 0.03) in POST (274 ± 233 mL) vs. PRE (427 ± 291). An increased (P = 0.03) overshoot of muscle deoxygenation during a metabolic transition was identified in POST. Skeletal muscle citrate synthase activity was not different (P = 0.11) in POST (131 ± 16 nmol min-1 mg-1 ) vs. PRE (138 ± 19). Maximal ADP-stimulated mitochondrial respiration (66 ± 18 pmol s-1 mg-1 (POST) vs. 72 ± 14 (PRE), P = 0.41) was not affected by bed rest. Apparent Km for ADP sensitivity of mitochondrial respiration was reduced in POST vs. PRE (P = 0.04). The VO2 m recovery time constant was not different (P = 0.79) in POST (22 ± 6 s) vs. PRE (22 ± 6). Resting VO2 m was reduced by 25% in POST vs. PRE (P = 0.006). Microvascular-endothelial function was impaired following a 10-day bed rest, whereas mitochondrial mass and function (both in vivo and ex vivo) were unaffected or slightly enhanced. KEY POINTS: Ten days of horizontal bed rest impaired in vivo oxidative function during exercise. Microvascular impairments were identified by different methods. Mitochondrial mass and mitochondrial function (evaluated both in vivo and ex vivo) were unchanged or even improved (i.e. enhanced mitochondrial sensitivity to submaximal [ADP]). Resting muscle oxygen uptake was significantly lower following bed rest, suggesting that muscle catabolic processes induced by bed rest/inactivity are less energy-consuming than anabolic ones.

18 citations


Journal ArticleDOI
01 Jul 2021
TL;DR: In this paper, the time course of muscle and tendon adaptations to submaximal (60% 1RM) and eccentric (ECC) contractions was investigated in both healthy young and older males.
Abstract: Resistance exercise training (RET) is well-known to counteract negative age-related changes in both muscle and tendon tissue. Traditional RET consists of both concentric (CON) and eccentric (ECC) contractions; nevertheless, isolated ECC contractions are metabolically less demanding and, thus, may be more suitable for older populations. However, whether submaximal (60% 1RM) CON or ECC contractions differ in their effectiveness is relatively unknown. Further, whether the time course of muscle and tendon adaptations differs to the above is also unknown. Therefore, this study aimed to establish the time course of muscle and tendon adaptations to submaximal CON and ECC RET. Twenty healthy young (24.5 ± 5.1 years) and 17 older males (68.1 ± 2.4 years) were randomly allocated to either isolated CON or ECC RET which took place 3/week for 8 weeks. Tendon biomechanical properties, muscle architecture and maximal voluntary contraction were assessed every 2 weeks and quadriceps muscle volume every 4 weeks. Positive changes in tendon Young's modulus were observed after 4 weeks in all groups after which adaptations in young males plateaued but continued to increase in older males, suggesting a dampened rate of adaptation with age. However, both CON and ECC resulted in similar overall changes in tendon Young's modulus, in all groups. Muscle hypertrophy and strength increases were similar between CON and ECC in all groups. However, pennation angle increases were greater in CON, and fascicle length changes were greater in ECC. Notably, muscle and tendon adaptations appeared to occur in synergy, presumably to maintain the efficacy of the muscle-tendon unit.

18 citations


Journal ArticleDOI
TL;DR: In this paper, the relevance of circulating C-terminal agrin fragment (CAF) as an accessible screening method alternative for sarcopenia has gained credence, and the pertinence of plasma CAF as a biomarker for SOP has been verified.
Abstract: Barriers associated with direct muscle quantification have prevented a consistent implementation of therapeutic measures for sarcopenia. Recently, the relevance of circulating C-terminal agrin fragment (CAF) as an accessible screening method alternative for sarcopenia has gained credence. Accordingly, this study aimed to verify the pertinence of plasma CAF as a biomarker for sarcopenia. Three hundred healthy adults aged between 50 and 83 years took part in this study. Sarcopenia was diagnosed according to the European Working Group on Sarcopenia in Older People criteria. Body composition was assessed using dual-energy x-ray absorptiometry, while muscle strength was examined using hand dynamometry. Plasma CAF concentrations were determined using a commercially available ELISA kit. CAF concentrations were significantly associated with appendicular lean mass (ALM), but not grip strength (p = .028, p = .575, respectively). Plasma CAF concentrations were significantly elevated in sarcopenic individuals compared to nonsarcopenic (p < .001). Overall, individuals with low grip strength or low ALM displayed significantly higher CAF levels compared to healthy controls, after adjusting for age and body mass index (p = .027, p = .003, respectively). In males, those with low grip strength or low ALM had significantly elevated CAF levels (p = .039, p = .027, respectively), while in females, only those with low ALM had significantly raised CAF concentrations, compared to healthy controls (p = .035). Our findings illuminate the potential relevance of CAF as an accessible biomarker for skeletal muscle health. CAF determination may enhance clinical practice by facilitating more widespread treatment strategies for sarcopenia. Nevertheless, future research is needed to confirm the diagnostic pertinence of CAF concentrations in screening for sarcopenia.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of a ketogenic diet on different parameters in semi-professional soccer players was investigated, including body weight and body composition, resting energy expenditure (REE), respiratory exchange ratio (RER), cross sectional area (CSA) and isometric muscle strength of quadriceps, counter movement jump (CMJ) and yoyo intermittent recovery test time.
Abstract: A ketogenic diet (KD) is a nutritional approach, usually adopted for weight loss, that restricts daily carbohydrates under 30 g/day. KD showed contradictory results on sport performance, whilst no data are available on team sports. We sought to investigate the influence of a KD on different parameters in semi-professional soccer players. Subjects were randomly assigned to a iso-protein (1.8 g/Kg body weight/day) ketogenic diet (KD) or western diet (WD) for 30 days. Body weight and body composition, resting energy expenditure (REE), respiratory exchange ratio (RER), cross sectional area (CSA) and isometric muscle strength of quadriceps, counter movement jump (CMJ) and yoyo intermittent recovery test time were measured. There was a significantly higher decrease of body fat (p = 0.0359), visceral adipose tissue (VAT) (p = 0.0018), waist circumference (p = 0.0185) and extra-cellular water (p = 0.0060) in KD compared to WD group. Lean soft tissue, quadriceps muscle area, maximal strength and REE showed no changes in both groups. RER decreased significantly in KD (p = 0.0008). Yo-yo intermittent test improved significantly (p < 0.0001) in both groups without significant differences between groups. CMJ significantly improved (p = 0.0021) only in KD. This is the first study investigating the effects of a KD on semi-professional soccer players. In our study KD athletes lost fat mass without any detrimental effects on strength, power and muscle mass. When the goal is a rapid weight reduction in such athletes, the use of a KD should be taken into account. registered retrospectively on Clinical Trial registration number NCT04078971 .

Journal ArticleDOI
TL;DR: This work aims to assess whether muscle hypertrophy does not occur at the expense of performance in skeletal muscles of Body Builders.
Abstract: Aim Skeletal muscles of Body Builders (BB) represent an interesting model to study muscle mass gains in response to high volume resistance training. It is debated whether muscle contractile performance improves in proportion to mass. Here, we aim to assess whether muscle hypertrophy does not occur at the expense of performance. Methods Six BB and Six untrained controls (CTRL) were recruited. Cross-sectional area (CSA) and maximum voluntary contraction (MVC) of quadriceps femoris muscle (QF) and CSA and architecture of vastus lateralis (VL) were determined. Moreover, a biopsy was taken from VL mid-portion and single fibres were analysed. Results QF CSA and MVC were 32% (n.s., P = .052) and 58% (P = .009) higher in BB than in CTRL, respectively. VL CSA was 37% higher in BB (P = .030). Fast 2A fibres CSA was 24% (P = .048) greater in BB than in CTRL, when determined in immunostained sections of biopsy samples. Single permeabilized fast fibres CSA was 37% (n.s., P = .052) higher in BB than in CTRL, and their force was slightly higher in BB (n.s.), while specific tension (P0 ) was 19% (P = .024) lower. The lower P0 was not explained either by lower myosin content or by impaired calcium diffusion. Conversely, the swelling caused by skinning-induced permeabilization was different and, when used to correct P0 , differences between populations disappeared. Conclusions The results show that high degree of muscle hypertrophy is not detrimental for force generation capacity, as increases in fibre size and force are strictly proportional once the differential swelling response is accounted for.

Journal ArticleDOI
TL;DR: A systematic review and meta-analysis was carried out to carry out an up-to-date evaluation of bed rest, with a specific focus on the magnitude of effects on muscle mass, strength, power, and functional capacity changes as well as the mechanisms, molecules, and pathways involved in muscle decay.
Abstract: Background: Maintaining skeletal muscle mass and function in aging is crucial for preserving the quality of life and health. An experimental bed rest (BR) protocol is a suitable model to explore muscle decline on aging during inactivity. Objective: The purpose of this systematic review and meta-analysis was, therefore, to carry out an up-to-date evaluation of bed rest, with a specific focus on the magnitude of effects on muscle mass, strength, power, and functional capacity changes as well as the mechanisms, molecules, and pathways involved in muscle decay. Design: This was a systematic review and meta-analysis study. Data sources: We used PubMed, Medline; Web of Science, Google Scholar, and the Cochrane library, all of which were searched prior to April 23, 2020. A manual search was performed to cover bed rest experimental protocols using the following key terms, either singly or in combination: "Elderly Bed rest," "Older Bed rest," "Old Bed rest," "Aging Bed rest," "Aging Bed rest," "Bed-rest," and "Bedrest". Eligibility criteria for selecting studies: The inclusion criteria were divided into four sections: type of study, participants, interventions, and outcome measures. The primary outcome measures were: body mass index, fat mass, fat-free mass, leg lean mass, cross-sectional area, knee extension power, cytokine pattern, IGF signaling biomarkers, FOXO signaling biomarkers, mitochondrial modulation biomarkers, and muscle protein kinetics biomarkers. Results: A total of 25 studies were included in the qualitative synthesis, while 17 of them were included in the meta-analysis. In total, 118 healthy elderly volunteers underwent 5-, 7-, 10-, or 14-days of BR and provided a brief sketch on the possible mechanisms involved. In the very early phase of BR, important changes occurred in the skeletal muscle, with significant loss of performance associated with a lesser grade reduction of the total body and muscle mass. Meta-analysis of the effect of bed rest on total body mass was determined to be small but statistically significant (ES = -0.45, 95% CI: -0.72 to -0.19, P < 0.001). Moderate, statistically significant effects were observed for total lean body mass (ES = -0.67, 95% CI: -0.95 to -0.40, P < 0.001) after bed rest intervention. Overall, total lean body mass was decreased by 1.5 kg, while there was no relationship between bed rest duration and outcomes (Z = 0.423, p = 672). The meta-analyzed effect showed that bed rest produced large, statistically significant, effects (ES = -1.06, 95% CI: -1.37 to -0.75, P < 0.001) in terms of the knee extension power. Knee extension power was decreased by 14.65 N/s. In contrast, to other measures, meta-regression showed a significant relationship between bed rest duration and knee extension power (Z = 4.219, p < 0.001). Moderate, statistically significant, effects were observed after bed rest intervention for leg muscle mass in both old (ES = -0.68, 95% CI: -0.96 to -0.40, P < 0.001) and young (ES = -0.51, 95% CI: -0.80 to -0.22, P < 0.001) adults. However, the magnitude of change was higher in older (MD = -0.86 kg) compared to younger (MD = -0.24 kg) adults. Conclusion: Experimental BR is a suitable model to explore the detrimental effects of inactivity in young adults, old adults, and hospitalized people. Changes in muscle mass and function are the two most investigated variables, and they allow for a consistent trend in the BR-induced changes. Mechanisms underlying the greater loss of muscle mass and function in aging, following inactivity, need to be thoroughly investigated.

Journal ArticleDOI
TL;DR: It is shown that four distinct US methods lead to different results in the assessment of BFlh Lf changes after a short-term period of unloading, and the implementation of EFOV technique (or alternatively MLE) to assess L f changes in BFlH during longitudinal studies is warranted.
Abstract: PURPOSE This study aimed to investigate the changes in fascicle length (Lf) of biceps femoris long head (BFlh) after 10 d of bed rest (BR) by comparing four different ultrasound (US) methods. METHODS Ten healthy men participated in 10-d BR. Before (BR0) and after (BR10) the BR period, BFlh Lf values were obtained using 1) extended-field-of-view (EFOV) technique, 2) the manual linear extrapolation (MLE) method, and 3) two trigonometric equations (equations A and B) from a single US image. RESULTS After BR10, decreased Lf values were observed by EFOV (P < 0.001; Hedges' g = 0.29) and MLE (P = 0.0082; g = 0.22) methods, but not with equations A and B. Differences between equation A and the other US methods were detected at both time points. The percentage of changes in Lf between BR0 and BR10 was influenced by the US methods applied, with difference detected between the changes measured by EFOV and the ones estimated by equation A (P = 0.04; g = 0.53). Bland-Altman analyses revealed relevant average absolute biases in Lf between EFOV and other methods at both time points (range BR0-BR10: MLE, 0.3-0.37 cm (3.4%-4.32%); equation B, 0.3-0.48 cm (3.24%-5.41%); equation A, 2.44-2.97 cm (24.05%-29.2%)). A significant correlation (r = 0.83) in percentage of change in Lf values was observed only between EFOV and MLE. CONCLUSIONS We showed that four distinct US methods lead to different results in the assessment of BFlh Lf changes after a short-term period of unloading. The implementation of EFOV technique (or alternatively MLE) to assess Lf changes in BFlh during longitudinal studies is warranted.

Journal ArticleDOI
TL;DR: In this paper, the beneficial effects of regular practice of dancing in physically active elders on concentration of C-terminal Agrin fragment (CAF), a marker of NMJ instability, muscle mass, strength, and physical performance in a group of 16 recreationally active older dancers were investigated.

Journal ArticleDOI
TL;DR: In this paper, the authors used a bed rest model to reproduce microgravity-induced morphological and physiological changes and can be used as clinical models of prolonged inactivity in humans.
Abstract: Space analogs, such as bed rest, are used to reproduce microgravity-induced morphological and physiological changes and can be used as clinical models of prolonged inactivity. Nevertheless, nonunif...

Journal ArticleDOI
TL;DR: In this article, the skeletal muscle anabolic effects of n-3 polyunsaturated fatty acids (n-3 PUFA) appear favored towards women; a property that could be exploited in older women who typically exhibit poor muscle growth responses to resistance exercise training (RET).
Abstract: BACKGROUND & AIMS The skeletal muscle anabolic effects of n-3 polyunsaturated fatty acids (n-3 PUFA) appear favoured towards women; a property that could be exploited in older women who typically exhibit poor muscle growth responses to resistance exercise training (RET). Here we sought to generate novel insights into the efficacy and mechanisms of n-3 PUFA alongside short-term RET in older women. METHODS We recruited 16 healthy older women (Placebo n = 8 (PLA): 67±1y, n-3 PUFA n = 8: 64±1y) to a randomised double-blind placebo-controlled trial (n-3 PUFA; 3680 mg/day versus PLA) of 6 weeks fully-supervised progressive unilateral RET (i.e. 6 × 8 reps, 75% 1-RM, 3/wk-1). Strength was assessed by knee extensor 1-RM and isokinetic dynamometry ∼ every 10 d. Thigh fat free mass (TFFM) was measured by DXA at 0/3/6 weeks. Bilateral vastus lateralis (VL) biopsies at 0/2/4/6 weeks with deuterium oxide (D2O) dosing were used to determine MPS responses for 0-2 and 4-6 weeks. Further, fibre cross sectional area (CSA), myonuclei number and satellite cell (SC) number were assessed, alongside muscle anabolic/catabolic signalling via immunoblotting. RESULTS RET increased 1-RM equally in the trained leg of both groups (+23 ± 5% n-3 PUFA vs. +25 ± 5% PLA (both P < 0.01)) with no significant increase in maximum voluntary contraction (MVC) (+10 ± 6% n-3 PUFA vs. +13 ± 5% PLA). Only the n-3 PUFA group increased TFFM (3774 ± 158 g to 3961 ± 151 g n-3 PUFA (P < 0.05) vs. 3406 ± 201 g to 3561 ± 170 PLA) and type II fibre CSA (3097 ± 339 μm2 to 4329 ± 264 μm2 n-3 PUFA (P < 0.05) vs. 2520 ± 316 μm2 to 3467 ± 303 μm2 in PL) with RET. Myonuclei number increased equally in n-3 PUFA and PLA in both type I and type II fibres, with no change in SC number. N-3 PUFA had no added benefit on muscle protein synthesis (MPS), however, during weeks 4-6 of RET, absolute synthesis rates (ASR) displayed a trend to increase with n-3 PUFA only (5.6 ± 0.3 g d-1 to 7.1 ± 0.5 g d-1 n-3 PUFA (P = 0.09) vs. 5.5 ± 0.5 g d-1 to 6.5 ± 0.5 g d-1 PLA). Further, the n-3 PUFA group displayed greater 4EBP1 activation after acute RE at 6 weeks. CONCLUSION n3-PUFA enhanced RET gains in muscle mass through type II fibre hypertrophy, with data suggesting a role for MPS rather than via SC recruitment. As such, the present study adds to a literature base illustrating the apparent enhancement of muscle hypertrophy with RET in older women fed adjuvant n3-PUFA.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while EMG of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance.
Abstract: Stretch-shortening type actions are characterized by lengthening of the pre-activated muscle-tendon unit (MTU) in the eccentric phase immediately followed by muscle shortening. Under 1 g, pre-activity before and muscle activity after ground contact, scale muscle stiffness, which is crucial for the recoil properties of the MTU in the subsequent push-off. This study aimed to examine the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while electromyography (EMG) of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance. Neuro-mechanical coupling in 1 g was characterized by high magnitudes of pre-activity and eccentric muscle activity allowing an isometric muscle behavior during ground contact. EMG during pre-activity and the concentric phase systematically increased from 0.1 to 1 g. Below 1 g the EMG in the eccentric phase was diminished, leading to muscle lengthening and reduced MTU stretches. Kinetic energy at take-off and performance were decreased compared to 1 g. Above 1 g, reduced EMG in the eccentric phase was accompanied by large MTU and muscle stretch, increased joint flexion amplitudes, energy loss and reduced performance. The energy outcome function established by linear mixed model reveals that the central nervous system regulates the extensor muscles phase- and load-specifically. In conclusion, neuro-mechanical coupling appears to be optimized in 1 g. Below 1 g, the energy outcome is compromised by reduced muscle stiffness. Above 1 g, loading progressively induces muscle lengthening, thus facilitating energy dissipation.