scispace - formally typeset
M

Marco Sandri

Researcher at University of Padua

Publications -  184
Citations -  35751

Marco Sandri is an academic researcher from University of Padua. The author has contributed to research in topics: Skeletal muscle & Autophagy. The author has an hindex of 70, co-authored 170 publications receiving 29471 citations. Previous affiliations of Marco Sandri include McGill University & National Research Council.

Papers
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy

TL;DR: It is shown that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases, leading to activation of Foxo transcription factors and atrogin-1 induction.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes

Daniel J. Klionsky, +235 more
- 16 Feb 2008 - 
TL;DR: A set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes are presented.
Journal ArticleDOI

FoxO3 controls autophagy in skeletal muscle in vivo.

TL;DR: FoxO3 controls the two major systems of protein breakdown in skeletal muscle, the ubiquitin-proteasomal and autophagic/lysosomal pathways, independently and is pointed to as potential therapeutic targets in muscle wasting disorders and other degenerative and neoplastic diseases in which autophagy is involved.
Journal ArticleDOI

FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells

TL;DR: It is reported that FoxO3 does so by stimulating overall protein degradation and coordinately activating both lysosomal and proteasomal pathways, and decreased IGF-1-PI3K-Akt signaling activates autophagy not only through mTOR but also more slowly by a transcription-dependent mechanism involvingFoxO3.