scispace - formally typeset
Search or ask a question

Showing papers by "Martha E. Shenton published in 2020"


Journal ArticleDOI
TL;DR: The largest sample of carefully harmonized diffusion MRI data is analyzed to comprehensively characterize age-related white matter trajectories, as measured by fractional anisotropy (FA), across the course of schizophrenia and shows that white matter changes in schizophrenia involve dynamic interactions between neuropathological processes in a tract-specific manner.
Abstract: Several prominent theories of schizophrenia suggest that structural white matter pathologies may follow a developmental, maturational, and/or degenerative process. However, a lack of lifespan studies has precluded verification of these theories. Here, we analyze the largest sample of carefully harmonized diffusion MRI data to comprehensively characterize age-related white matter trajectories, as measured by fractional anisotropy (FA), across the course of schizophrenia. Our analysis comprises diffusion scans of 600 schizophrenia patients and 492 healthy controls at different illness stages and ages (14-65 years), which were gathered from 13 sites. We determined the pattern of age-related FA changes by cross-sectionally assessing the timing of the structural neuropathology associated with schizophrenia. Quadratic curves were used to model between-group FA differences across whole-brain white matter and fiber tracts at each age; fiber tracts were then clustered according to both the effect-sizes and pattern of lifespan white matter FA differences. In whole-brain white matter, FA was significantly lower across the lifespan (up to 7%; p < 0.0033) and reached peak maturation younger in patients (27 years) compared to controls (33 years). Additionally, three distinct patterns of neuropathology emerged when investigating white matter fiber tracts in patients: (1) developmental abnormalities in limbic fibers, (2) accelerated aging and abnormal maturation in long-range association fibers, (3) severe developmental abnormalities and accelerated aging in callosal fibers. Our findings strongly suggest that white matter in schizophrenia is affected across entire stages of the disease. Perhaps most strikingly, we show that white matter changes in schizophrenia involve dynamic interactions between neuropathological processes in a tract-specific manner.

106 citations


Journal ArticleDOI
TL;DR: Results show that functional changes in brain network organization precede the onset of psychosis and may drive psychosis development in at-risk youth.
Abstract: The emergence of prodromal symptoms of schizophrenia and their evolution into overt psychosis may stem from an aberrant functional reorganization of the brain during adolescence. To examine whether abnormalities in connectome organization precede psychosis onset, we performed a functional connectome analysis in a large cohort of medication-naive youth at risk for psychosis from the Shanghai At Risk for Psychosis (SHARP) study. The SHARP program is a longitudinal study of adolescents and young adults at Clinical High Risk (CHR) for psychosis, conducted at the Shanghai Mental Health Center in collaboration with neuroimaging laboratories at Harvard and MIT. Our study involved a total of 251 subjects, including 158 CHRs and 93 age-, sex-, and education-matched healthy controls. During 1-year follow-up, 23 CHRs developed psychosis. CHRs who would go on to develop psychosis were found to show abnormal modular connectome organization at baseline, while CHR non-converters did not. In all CHRs, abnormal modular connectome organization at baseline was associated with a threefold conversion rate. A region-specific analysis showed that brain regions implicated in early-course schizophrenia, including superior temporal gyrus and anterior cingulate cortex, were most abnormal in terms of modular assignment. Our results show that functional changes in brain network organization precede the onset of psychosis and may drive psychosis development in at-risk youth.

45 citations


Journal ArticleDOI
TL;DR: In this sample of symptomatic former NFL players, there was a direct effect between RHI and reduced cellular energy metabolism (i.e., lower creatine) and MRS neurochemicals associated with neuroinflammation also correlated with behavioral/mood symptoms.
Abstract: The long-term neurologic consequences of exposure to repetitive head impacts (RHI) are not well understood. This study used magnetic resonance spectroscopy (MRS) to examine later-life neurochemistry and its association with RHI and clinical function in former National Football League (NFL) players. The sample included 77 symptomatic former NFL players and 23 asymptomatic individuals without a head trauma history. Participants completed cognitive, behavior, and mood measures. N-acetyl aspartate, glutamate/glutamine, choline, myo-inositol, creatine, and glutathione were measured in the posterior (PCG) and anterior (ACG) cingulate gyrus, and parietal white matter (PWM). A cumulative head impact index (CHII) estimated RHI. In former NFL players, a higher CHII correlated with lower PWM creatine (r = −0.23, p = 0.02). Multivariate mixed-effect models examined neurochemical differences between the former NFL players and asymptomatic individuals without a history of head trauma. PWM N-acetyl aspartate was lower among the former NFL players (mean diff. = 1.02, p = 0.03). Between-group analyses are preliminary as groups were recruited based on symptomatic status. The ACG was the only region associated with clinical function, including positive correlations between glutamate (r = 0.32, p = 0.004), glutathione (r = 0.29, p = 0.02), and myo-inositol (r = 0.26, p = 0.01) with behavioral/mood symptoms. Other positive correlations between ACG neurochemistry and clinical function emerged (i.e., behavioral/mood symptoms, cognition), but the positive directionality was unexpected. All analyses controlled for age, body mass index, and education (for analyses examining clinical function). In this sample of symptomatic former NFL players, there was a direct effect between RHI and reduced cellular energy metabolism (i.e., lower creatine). MRS neurochemicals associated with neuroinflammation also correlated with behavioral/mood symptoms.

40 citations


Journal ArticleDOI
TL;DR: There is initial evidence to suggest that sex‐related differences following concussion are important to consider in efforts to develop objective biomarkers for the diagnosis and prognosis of concussion.
Abstract: Sports-related concussion is a serious health challenge, and females are at higher risk of sustaining a sports-related concussion compared to males. Although there are many studies that investigate outcomes following concussion, females remain an understudied population, despite representing a large proportion of the organized sports community. In this review, we provide a summary of studies that investigate sex-related differences in outcome following sports-related concussion. Moreover, we provide an introduction to the methods used to study sex-related differences after sports-related concussion, including common clinical and cognitive measures, neuroimaging techniques, as well as biomarkers. A literature search inclusive of articles published to March 2020 was performed using PubMed. The studies were reviewed and discussed with regard to the methods used. Findings from these studies remain mixed with regard to the effect of sex on clinical symptoms, concussion-related alterations in brain structure and function, and recovery trajectories. Nonetheless, there is initial evidence to suggest that sex-related differences following concussion are important to consider in efforts to develop objective biomarkers for the diagnosis and prognosis of concussion. Additional studies on this topic are, however, clearly needed to improve our understanding of sex-related differences following concussion, as well as to understand their neurobiological underpinnings. Such studies will help pave the way toward more personalized clinical management and treatment of sports-related concussion.

40 citations


Journal ArticleDOI
TL;DR: Evidence is provided that cortical gray matter structure, possibly resulting from reduced synaptic connectivity at the microcircuit level, is related to impaired γ synchronization and increased spontaneous γ activity in schizophrenia.
Abstract: We investigated whether the gray matter volume of primary auditory cortex (Heschl's gyrus [HG]) was associated with abnormal patterns of auditory γ activity in schizophrenia, namely impaired γ synchronization in the 40-Hz auditory steady-state response (ASSR) and increased spontaneous broadband γ power. (The γ data were previously reported in Hirano et al, JAMA Psychiatry, 2015;72:813-821). Participants were 24 healthy controls (HC) and 23 individuals with chronic schizophrenia (SZ). The ASSR was obtained from the electroencephalogram to click train stimulation at 20, 30, and 40 Hz rates. Dipole source localization of the ASSR was used to provide a spatial filter of auditory cortex activity, from which ASSR evoked power and phase locking factor (PLF), and induced γ power were computed. HG gray matter volume was derived from structural magnetic resonance imaging at 3 T with manually traced regions of interest. As expected, HG gray matter volume was reduced in SZ compared with HC. In SZ, left hemisphere ASSR PLF and induced γ power during the 40-Hz stimulation condition were positively and negatively correlated with left HG gray matter volume, respectively. These results provide evidence that cortical gray matter structure, possibly resulting from reduced synaptic connectivity at the microcircuit level, is related to impaired γ synchronization and increased spontaneous γ activity in schizophrenia.

39 citations


Journal ArticleDOI
TL;DR: This work presents results from a first study that uses a multi-shell diffusion MRI data set coupled with an advanced multi-fiber tractography algorithm to probe microstructural measures related to axonal/cellular density and volume of fronto-striato-thalamic pathways in children with ADHD and healthy controls.
Abstract: Studies using diffusion tensor imaging (DTI) have documented alterations in the attention and executive system in children and adolescents with attention-deficit/hyperactivity disorder (ADHD). While abnormalities in the frontal lobe have also been reported, the associated white matter fiber bundles have not been investigated comprehensively due to the complexity in tracing them through fiber crossings. Furthermore, most studies have used a non-specific DTI model to understand white matter abnormalities. We present results from a first study that uses a multi-shell diffusion MRI (dMRI) data set coupled with an advanced multi-fiber tractography algorithm to probe microstructural measures related to axonal/cellular density and volume of fronto-striato-thalamic pathways in children with ADHD (N = 30) and healthy controls (N = 28). Head motion was firstly examined as a priority in order to assure that no group difference existed. We investigated 45 different white matter fiber bundles in the brain. After correcting for multiple comparisons, we found lower axonal/cellular packing density and volume in ADHD children in 8 of the 45 fiber bundles, primarily in the right hemisphere as follows: 1) Superior longitudinal fasciculus-II (SLF-II) (right), 2) Thalamus to precentral gyrus (right), 3) Thalamus to superior-frontal gyrus (right), 4) Caudate to medial orbitofrontal gyrus (right), 5) Caudate to precentral gyrus (right), 6) Thalamus to paracentral gyrus (left), 7) Caudate to caudal middlefrontal gyrus (left), and 8) Cingulum (bilateral). Our results demonstrate reduced axonal/cellular density and volume in certain frontal lobe white matter fiber tracts, which sub-serve the attention function and executive control systems. Further, our work shows specific microstructural abnormalities in the striato-thalamo-cortical connections, which have not been previously reported in children with ADHD.

30 citations





Journal ArticleDOI
TL;DR: In this paper, the authors proposed a risk identification strategy to increase the predictability of individuals at clinical high risk of developing psychosis within 2.5 years of clinical high-risk individuals.
Abstract: Objective:Since only 30% or fewer of individuals at clinical high risk convert to psychosis within 2 years, efforts are underway to refine risk identification strategies to increase their predictiv...

21 citations


Journal ArticleDOI
TL;DR: It is suggested that WM properties, as measured by dMRI, may have a potential impact on clinical improvement following ketamine, and to post-treatment microstructural changes as a candidate neuroimaging marker of ketamine’s cellular mechanisms.
Abstract: Ketamine is increasingly being used as a therapeutic for treatment-resistant depression (TRD), yet the effects of ketamine on the human brain remain largely unknown. This pilot study employed diffusion magnetic resonance imaging (dMRI) to examine relationships between ketamine treatment and white matter (WM) microstructure, with the aim of increasing the current understanding of ketamine’s neural mechanisms of action in humans. Longitudinal dMRI data were acquired from 13 individuals with TRD two hours prior to (pre-infusion), and four hours following (post-infusion), an intravenous ketamine infusion. Free-water imaging was employed to quantify cerebrospinal fluid-corrected mean fractional anisotropy (FA) in 15 WM bundles pre- and post-infusion. Analyses revealed that higher pre-infusion FA in the left cingulum bundle and the left superior longitudinal fasciculus was associated with greater depression symptom improvement 24 h post-ketamine. Moreover, four hours after intravenous administration of ketamine, FA rapidly increased in numerous WM bundles in the brain; this increase was significantly associated with 24 h symptom improvement in select bundles. Overall, the results of this preliminary study suggest that WM properties, as measured by dMRI, may have a potential impact on clinical improvement following ketamine. Ketamine administration additionally appears to be associated with rapid WM diffusivity changes, suggestive of rapid changes in WM microstructure. This study thus points to pre-treatment WM structure as a potential factor associated with ketamine’s clinical efficacy, and to post-treatment microstructural changes as a candidate neuroimaging marker of ketamine’s cellular mechanisms.

Journal ArticleDOI
TL;DR: A small Phase II, three-institution, randomized placebo-controlled trial of subjects with TBI to assess the safety and efficacy of intravenous (IV) glyburide, finding no differences in adverse events or severe adverse events between groups.
Abstract: Pre-clinical studies of traumatic brain injury (TBI) show that glyburide reduces edema and hemorrhagic progression of contusions. We conducted a small Phase II, three-institution, randomized placebo-controlled trial of subjects with TBI to assess the safety and efficacy of intravenous (IV) glyburide. Twenty-eight subjects were randomized and underwent a 72-h infusion of IV glyburide or placebo, beginning within 10 h of trauma. Of the 28 subjects, 25 had Glasgow Coma Scale (GCS) scores of 6-10, and 14 had contusions. There were no differences in adverse events (AEs) or severe adverse events (ASEs) between groups. The magnetic resonance imaging (MRI) percent change at 72-168 h from screening/baseline was compared between the glyburide and placebo groups. Analysis of contusions (7 per group) showed that lesion volumes (hemorrhage plus edema) increased 1036% with placebo versus 136% with glyburide (p = 0.15), and that hemorrhage volumes increased 11.6% with placebo but decreased 29.6% with glyburide (p = 0.62). Three diffusion MRI measures of edema were quantified: mean diffusivity (MD), free water (FW), and tissue MD (MDt), corresponding to overall, extracellular, and intracellular water, respectively. The percent change with time for each measure was compared in lesions (n = 14) versus uninjured white matter (n = 24) in subjects receiving placebo (n = 20) or glyburide (n = 18). For placebo, the percent change in lesions for all three measures was significantly different compared with uninjured white matter (analysis of variance [ANOVA], p < 0.02), consistent with worsening of edema in untreated contusions. In contrast, for glyburide, the percent change in lesions for all three measures was not significantly different compared with uninjured white matter. Further study of IV glyburide in contusion TBI is warranted.

Journal ArticleDOI
11 Feb 2020
TL;DR: Results from this study are expected to hasten identification of actionable treatment targets that are closely associated with clinical outcomes, and identify subgroups who share common neuroprogressive trajectories toward the development of individualized treatments.
Abstract: Psychotic disorders are severe, debilitating, and even fatal. The development of targeted and effective interventions for psychosis depends upon on clear understanding of the timing and nature of disease progression to target processes amenable to intervention. Strong evidence suggests early and ongoing neuroprogressive changes, but timing and inflection points remain unclear and likely differ across cognitive, clinical, and brain measures. Additionally, granular evidence across modalities is particularly sparse in the “bridging years” between first episode and established illness—years that may be especially critical for improving outcomes and during which interventions may be maximally effective. Our objective is the systematic, multimodal characterization of neuroprogression through the early course of illness in a cross-diagnostic sample of patients with psychosis. We aim to (1) interrogate neurocognition, structural brain measures, and network connectivity at multiple assessments over the first eight years of illness to map neuroprogressive trajectories, and (2) examine trajectories as predictors of clinical and functional outcomes. We will recruit 192 patients with psychosis and 36 healthy controls. Assessments will occur at baseline and 8- and 16-month follow ups using clinical, cognitive, and imaging measures. We will employ an accelerated longitudinal design (ALD), which permits ascertainment of data across a longer timeframe and at more frequent intervals than would be possible in a single cohort longitudinal study. Results from this study are expected to hasten identification of actionable treatment targets that are closely associated with clinical outcomes, and identify subgroups who share common neuroprogressive trajectories toward the development of individualized treatments.

Journal ArticleDOI
TL;DR: Findings suggest abnormalities (possibly myelin related) in the CB in individuals at clinical high risk for psychosis are suggested.

Journal ArticleDOI
TL;DR: This study evaluates, longitudinally, the visual P300, as well as P1, N1, and N200, in CHR, in clinical high‐risk subjects (CHR).
Abstract: Aim We previously reported abnormal P300 and N200 in a visual oddball task, and progressive P300 amplitude reduction at 1-year follow-up in patients with first-episode schizophrenia. P300 reduction as well as intact P1/N1 were also observed in clinical high-risk subjects (CHR), but whether or not these components change over time is unknown. This study evaluates, longitudinally, the visual P300, as well as P1, N1, and N200, in CHR. Methods Visual event-related potentials (ERP) were recorded twice, once at baseline and once at 1-year follow-up in CHR (n = 19) and healthy comparison subjects (HC; n = 28). Participants silently counted infrequent target stimuli ('x') among standard stimuli ('y') presented on the screen while the 64-channel electroencephalogram was recorded. Results No CHR converted to psychosis from baseline to 1-year follow-up in this study. Visual P300 amplitude was reduced and the latency was delayed significantly in CHR at both time points compared with HC. Furthermore, CHR subjects who had more positive symptoms showed more amplitude reduction at both time points. P1, N1, and N200 did not differ between groups. Conclusion Visual P300 amplitude was found to be reduced in CHR individuals compared with HC. We note that this finding is in subjects who did not convert to psychosis at 1-year follow-up. The association between visual P300 amplitude and symptoms suggests that for CHR who often experience clinical symptoms and seek medical care, visual P300 may be an important index that reflects the pathophysiological impairment underlying such clinical states.

Journal ArticleDOI
TL;DR: Larger P2 and P3 with greater estimated premorbid intellect in patients indicate a possible neuroprotective effect of intellect in FESz, and early sensory processing (N1, P2) correlated with later cognitive processing (P3) and automatic preattentive memory (pitch-deviant MMN); in well individuals, N1 was associated with MMN.
Abstract: The N1, P2, and P3 event-related potentials (ERPs) are impaired in first-episode schizophrenia (FESz). Reduced pitch-deviant mismatch negativity (MMN) is present in chronic schizophrenia but not FE...

Journal ArticleDOI
TL;DR: The results demonstrate a less integrative pattern of frontostriatal structural connectivity in chronic schizophrenia, which yields a less complex input pattern to the striatum from the cortex with less circuit integration at the level of thestriatum.
Abstract: We investigated brain wiring in chronic schizophrenia and healthy controls in frontostriatal circuits using diffusion magnetic resonance imaging tractography in a novel way. We extracted diffusion streamlines in 27 chronic schizophrenia and 26 healthy controls connecting 4 frontal subregions to the striatum. We labeled the projection zone striatal surface voxels into 2 subtypes: dominant-input from a single cortical subregion, and, functionally integrative, with mixed-input from diverse cortical subregions. We showed: 1) a group difference for total striatal surface voxel number (P = .045) driven by fewer mixed-input voxels in the left (P = .007), but not right, hemisphere; 2) a group by hemisphere interaction for the ratio quotient between voxel subtypes (P = .04) with a left (P = .006), but not right, hemisphere increase in schizophrenia, also reflecting fewer mixed-input voxels; and 3) fewer mixed-input voxel counts in schizophrenia (P = .045) driven by differences in left hemisphere limbic (P = .007) and associative (P = .01), but not sensorimotor, striatum. These results demonstrate a less integrative pattern of frontostriatal structural connectivity in chronic schizophrenia. A diminished integrative pattern yields a less complex input pattern to the striatum from the cortex with less circuit integration at the level of the striatum. Further, as brain wiring occurs during early development, aberrant brain wiring could serve as a developmental biomarker for schizophrenia.

Journal ArticleDOI
TL;DR: Outcome stratification into remission, symptomatic and poor groups was associated with increasing cognitive deficits in learning and processing speed, and these findings support cross-cultural generalizability and advance understanding of CHR neurocognitive heterogeneity associated with 1-year clinical outcomes.

Journal ArticleDOI
TL;DR: The present review of the orbitofrontal sulcogyral pattern indicated that type I expression might reflect a neurodevelopmental protective marker, and type II and III expressions, as well as fewer numbers of IOS and POS, might reflect neuro developmental risk markers.
Abstract: Objective. To systematically assess previous findings on the orbitofrontal sulcogyral pattern in psychiatric disorders and to address the utility of this pattern as a transdiagnostic trait marker of early neurodevelopment in the social brain. Methods. An online literature search was conducted using the PubMed database from inception to August 2019. Studies included in this review were based on the Chiavaras's original classification method of this H-shaped sulcus (type I, II, and III), intermediate orbital sulcus (IOS), and posterior orbital sulcus (POS). Results. Twenty-six studies were included in the review. Sixteen studies (62%) focused on schizophrenia spectrum (Sz) disorders, and the remaining studies focused on autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), history of extremely preterm and extremely low birth weight, bipolar disorder (BD), panic disorder, obsessive-compulsive disorder, cannabis users, and pathological gambling. In Sz, compared with healthy controls, the orbitofrontal sulcogyral pattern was decreased in type I, increased in type II and III, and there were fewer numbers of IOS and POS reported, although specificity in sex and hemispheric dominance was not consistent. BD and neurodevelopmental disorders in ASD and ADHD showed a similar pattern of alteration to that observed in the Sz. Conclusions. The present review of the orbitofrontal sulcogyral pattern indicated that type I expression might reflect a neurodevelopmental protective marker, and type II and III expressions, as well as fewer numbers of IOS and POS, might reflect neurodevelopmental risk markers. These trait markers may be transdiagnostic among socially disabling diseases.

Journal ArticleDOI
TL;DR: Decreased cortical thickness in individuals with PTSD + mTBI is associated with decreased serum neurosteroid levels and greater PTSD symptom severity, and future studies might investigate whether treatment with neurosteroids could counteract stress-induced neural atrophy in PTSD +mTBI by potentially preserving cortical thickness.
Abstract: Posttraumatic stress disorder (PTSD) co-occurring with mild traumatic brain injury (mTBI) is common in veterans. Worse clinical outcome in those with PTSD has been associated with decreased serum neurosteroid levels. Furthermore, decreased cortical thickness has been associated with both PTSD and mTBI. However, it is not known whether decreased neurosteroids are associated with decreased cortical thickness in PTSD co-occurring with mTBI. This study included 141 individuals divided into the following groups: (a) mTBI group (n = 32 [10 female, 22 male] veterans with a history of mTBI); (b) PTSD + mTBI group (n = 41 [6 female, 35 male] veterans with current PTSD with a history of mTBI); and (c) control group (n = 68 [35 female, 33 male] control participants), which were acquired through the Injury and Traumatic Stress (INTRuST) Clinical Consortium. Subjects underwent clinical assessment, magnetic resonance imaging at 3 T, and serum neurosteroid quantifications of allopregnanolone (ALLO) and pregnenolone (PREGN). Group differences in cortical thickness and associations between serum neurosteroid levels and cortical thickness were investigated. Cortical thickness was decreased in the PTSD + mTBI group compared with the other groups. In the PTSD + mTBI group, decreased cortical thickness was also associated with lower serum ALLO (right superior frontal cortex) and lower serum PREGN (left middle temporal and right orbitofrontal cortex). Cortical thickness in the middle temporal and orbitofrontal cortex was associated with PTSD symptom severity. There were no significant associations between neurosteroids and cortical thickness in the mTBI or control groups. Decreased cortical thickness in individuals with PTSD + mTBI is associated with decreased serum neurosteroid levels and greater PTSD symptom severity. Causality is unclear. However, future studies might investigate whether treatment with neurosteroids could counteract stress-induced neural atrophy in PTSD + mTBI by potentially preserving cortical thickness.

Journal ArticleDOI
TL;DR: The results suggest that altered P3a modulations to emotional faces may be associated with emotion recognition deficits in patients with schizophrenia.
Abstract: Existing evidence suggests that patients with schizophrenia may have a deficit in processing facial expressions. However, the neural basis of this processing deficit remains unclear. A total of 20 men diagnosed with chronic schizophrenia and 13 age- and sex-matched controls participated in the study. We investigated visual N170 and P3a components evoked in response to fearful, happy, and sad faces during an emotion discrimination task. Compared with control subjects, patients showed significantly smaller N170 amplitudes bilaterally (P = .04). We found no significant main effect of emotion of the presented faces (fearful, happy, or sad) on N170 amplitude. Patients showed significantly smaller P3a amplitudes in response to fearful (P = .01) and happy (P = .02) faces, but no significant between-group differences were observed for sad faces (P = .22). Moreover, we found no significant P3a modulation effect in response to emotional faces in patients with schizophrenia. Our results suggest that altered P3a modulations to emotional faces may be associated with emotion recognition deficits in patients with schizophrenia.

Journal ArticleDOI
TL;DR: Brain morphology and neurocognitive features varied between individuals with PTSD who did versus did not have exposure to childhood maltreatment, highlighting the need to assess developmental history of maltreatment when examining biomarkers in PTSD.

Journal ArticleDOI
TL;DR: PFC-mediated failure of executive attention-episodic memory interactions may represent an important mechanism in neuropsychological disturbance in SZ.
Abstract: We hypothesized that neuropsychological disturbance in schizophrenia (SZ) may reflect faulty interactions of executive attention and episodic memory, emanating, in part, from reduced prefrontal cortex (PFC) gray matter volume. Participants with SZ (n = 84) and age-matched (n = 77) controls completed both the Wisconsin Card Sorting Test (WCST) and the Wechsler Memory Scale-Third Edition (WMS-III), used, respectively, as measures of executive attention and episodic memory. A subset of SZ (n = 27) and control (n = 17) groups also had available 3-T magnetic resonance imaging (MRI) studies of the PFC. For SZ, but not control groups, neuropsychological results indicated that executive attention interacted significantly with episodic memory, with failures of executive attention, as reflected by increased WCST perseverative errors, directly linked to poor performance on the WMS-III measure of delayed visual recall of action scenes. MRI results indicated reduced left PFC gray matter volume for SZ group, which in turn correlated significantly with their deficits in visual memory but not in executive attention. Results showed that 61% of the variance in neuropsychological performance in the SZ group was attributed to gray matter volume of left inferior prefrontal gyrus gray matter volume. PFC-mediated failure of executive attention-episodic memory interactions may represent an important mechanism in neuropsychological disturbance in SZ.

Book ChapterDOI
01 Jan 2020
TL;DR: This chapter first integrates information from the imaging modalities presented in Neuroimaging of Schizophrenia followed by an overview of the state of the field, and cites several conceptual and methodological shortcomings that have hindering progress to date in understanding the underpinnings of schizophrenia.
Abstract: Neuroimaging has been central to the study of schizophrenia since the introduction of computerized-tomography (CT) and magnetic resonance imaging (MRI) in the 1970s (CT) and 1980s (MRI). Over the last few decades, the field has generated a wealth of information across an array of modalities to interrogate, in vivo, brain structure and function, neurochemistry, neurophysiology, neural connectivity, and neurodevelopment. However, despite the advances made possible by neuroimaging in the field of schizophrenia, the scientific community has yet to produce a “clinical biomarker of schizophrenia” that would provide psychiatry with more objective measures of diagnosis, prognosis, and patient care outcomes. In this chapter, we first integrate information from the imaging modalities presented in Neuroimaging of Schizophrenia followed by an overview of the state of the field. We then cite several conceptual and methodological shortcomings that have hindering progress to date in understanding the underpinnings of schizophrenia. For each of these shortcomings, we recommend approaches that we believe will be most effective in future studies in moving the field forward.

Proceedings ArticleDOI
03 Apr 2020
TL;DR: ARBA is an Agglomerative Clustering procedure, like Ward's method, which segments image sets in a common space to greedily maximize a likelihood function and is shown to increase sensitivity over VBA in a detection task on multivariate Diffusion MRI brain images.
Abstract: A fundamental problem in brain imaging is the identification of volumes whose features distinguish two populations. One popular solution, Voxel-Based Analyses (VBA), glues together contiguous voxels with significant intra-voxel population differences. VBA's output regions may not be spatially consistent: each voxel may show a unique population effect. We introduce Agglomerative Region-Based Analysis (ARBA), which mitigates this issue to increase sensitivity. ARBA is an Agglomerative Clustering procedure, like Ward's method, which segments image sets in a common space to greedily maximize a likelihood function. The resulting regions are pared down to a set of disjoint regions that show statistically significant population differences via Permutation Testing. ARBA is shown to increase sensitivity over VBA in a detection task on multivariate Diffusion MRI brain images.