scispace - formally typeset
Search or ask a question

Showing papers by "Paul Wilmes published in 2017"


Journal ArticleDOI
TL;DR: This work presents AGORA (assembly of gut organisms through reconstruction and analysis), a resource of genome-scale metabolic reconstructions semi-automatically generated for 773 human gut bacteria, and identified a defined growth medium for Bacteroides caccae ATCC 34185.
Abstract: A large set of microbial metabolic models (AGORA) could be applied to better understand the functions of the human gut microbiome. Genome-scale metabolic models derived from human gut metagenomic data can be used as a framework to elucidate how microbial communities modulate human metabolism and health. We present AGORA (assembly of gut organisms through reconstruction and analysis), a resource of genome-scale metabolic reconstructions semi-automatically generated for 773 human gut bacteria. Using this resource, we identified a defined growth medium for Bacteroides caccae ATCC 34185. We also showed that interactions among modeled species depend on both the metabolic potential of each species and the nutrients available. AGORA reconstructions can integrate either metagenomic or 16S rRNA sequencing data sets to infer the metabolic diversity of microbial communities. AGORA reconstructions could provide a starting point for the generation of high-quality, manually curated metabolic reconstructions. AGORA is fully compatible with Recon 2, a comprehensive metabolic reconstruction of human metabolism, which will facilitate studies of host–microbiome interactions.

552 citations


Journal ArticleDOI
TL;DR: It is argued that the closing of existing gaps in functional knowledge should be addressed by a most-wanted gene list, the development and application of molecular and cellular high-throughput measurements, theDevelopment and sensible use of experimental models, as well as the direct study of observable molecular effects in the human host.

388 citations


Journal ArticleDOI
TL;DR: Col colonization and succession by bacteria, archaea and microeukaryotes during the first year of life within the gastrointestinal tract of infants delivered either vaginally or by cesarean section is described using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing.
Abstract: Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract.

199 citations


Journal ArticleDOI
TL;DR: Almost 100 CAZyme-annotated genomes reconstructed in this study provide an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries.
Abstract: The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to 11 prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. Unlike in other ruminants, Spirochaetes constituted a significant proportion of the community and our analyses indicate that the corresponding strains are primarily pectin digesters. Pectin-degrading genes were also common in MAGs of Ruminococcus, Fibrobacteres and Bacteroidetes and were overall overrepresented in the moose microbiome compared with other ruminants. Phylogenomic analyses revealed several clades within the Bacteriodetes without previously characterized genomes. Several of these MAGs encoded a large numbers of dockerins, a module usually associated with cellulosomes. The Bacteroidetes dockerins were often linked to CAZymes and sometimes encoded inside polysaccharide utilization loci, which has never been reported before. The almost 100 CAZyme-annotated genomes reconstructed in this study provide an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries.

107 citations


Journal ArticleDOI
TL;DR: A close look is taken at developments in the mutli-omic analyses and the use of mass spectrometry to investigate the exchange of metabolites between the host and the microbiome as well as the environment within the microbiome.

99 citations


Journal ArticleDOI
TL;DR: A high-quality circular genome of Leptospirillum ferriphilumT obtained by PacBio single-molecule real-time (SMRT) long-read sequencing is presented and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future.
Abstract: Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilumT) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilumT obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Leptospirillum ferriphilumT to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCELeptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilumT coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilumT for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction.

67 citations


Journal ArticleDOI
TL;DR: The remaining problems and challenges of evaluating sustainability are discussed and one measurable bioindicator for soil management sustainability is suggested, calculated from the systematic contrasting of multi-omic markers for genetic potential and functional activity and referred to as potential Maximum Ecological Performance (MEPpot) in this study.

59 citations


Journal ArticleDOI
TL;DR: CORE [PoC/15/11014639, CORE/14/BM/8066232, Core/11/BM /1186762] as mentioned in this paper, ATTRACT [ATTRACT/A09/03], European Union [INTER/JPND/12/01], Accompany Measures mobility grant - Luxembourg National Research Fund (FNR) [12/AM2c/05] [12]

30 citations


Journal ArticleDOI
TL;DR: A major shift in the GIT microbiome after allo‐HSCT including a marked reduction in bacterial diversity, accompanied by only limited changes in eukaryotes and archaea is revealed, suggesting that prophylactic antibiotic administration may adversely affect the overall treatment outcome.

28 citations


Journal ArticleDOI
TL;DR: ICoVeR is an open source software package that allows curation of disparate genome bins generated with automatic binning algorithms and is implemented in R, therefore the software can be easily installed on any system for which R is available.
Abstract: Recent advances in high-throughput sequencing allow for much deeper exploitation of natural and engineered microbial communities, and to unravel so-called “microbial dark matter” (microbes that until now have evaded cultivation). Metagenomic analyses result in a large number of genomic fragments (contigs) that need to be grouped (binned) in order to reconstruct draft microbial genomes. While several contig binning algorithms have been developed in the past 2 years, they often lack consensus. Furthermore, these software tools typically lack a provision for the visualization of data and bin characteristics. We present ICoVeR, the Interactive Contig-bin Verification and Refinement tool, which allows the visualization of genome bins. More specifically, ICoVeR allows curation of bin assignments based on multiple binning algorithms. Its visualization window is composed of two connected and interactive main views, including a parallel coordinates view and a dimensionality reduction plot. To demonstrate ICoVeR’s utility, we used it to refine disparate genome bins automatically generated using MetaBAT, CONCOCT and MyCC for an anaerobic digestion metagenomic (AD microbiome) dataset. Out of 31 refined genome bins, 23 were characterized with higher completeness and lower contamination in comparison to their respective, automatically generated, genome bins. Additionally, to benchmark ICoVeR against a previously validated dataset, we used Sharon’s dataset representing an infant gut metagenome. ICoVeR is an open source software package that allows curation of disparate genome bins generated with automatic binning algorithms. It is freely available under the GPLv3 license at https://git.list.lu/eScience/ICoVeR . The data management and analytical functions of ICoVeR are implemented in R, therefore the software can be easily installed on any system for which R is available. Installation and usage guide together with the example files ready to be visualized are also provided via the project wiki. ICoVeR running instance preloaded with AD microbiome and Sharon’s datasets can be accessed via the website.

19 citations


Journal ArticleDOI
TL;DR: The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater.
Abstract: The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and annotation together with a general physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater.

Posted ContentDOI
20 Dec 2017-bioRxiv
TL;DR: This is the first report of the presence of RNA molecules as contaminants in laboratory reagents and the described protocols should be applied in the future to avoid confounding sRNA studies.
Abstract: Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. Due to its inherent instability, contamination with RNA is usually considered to be unlikely. Here we report the presence of small RNA (sRNA) contaminants in widely used microRNA extraction kits and means for their depletion. Sequencing of sRNAs extracted from human plasma samples was performed and significant levels of non-human (exogenous) sequences were detected. The source of the most abundant of these sequences could be traced to the microRNA extraction columns by qPCR-based analysis of laboratory reagents. The presence of artefactual sequences originating from the confirmed contaminants were furthermore replicated in a range of published datasets. To avoid artefacts in future experiments, several protocols for the removal of the contaminants were elaborated, minimal amounts of starting material for artefact-free analyses were defined, and the reduction of contaminant levels for identification of bona fide sequences using 9ultra-clean9 extraction kits was confirmed. In conclusion, this is the first report of the presence of RNA molecules as contaminants in laboratory reagents. The described protocols should be applied in the future to avoid confounding sRNA studies.