scispace - formally typeset
Search or ask a question

Showing papers in "Standards in Genomic Sciences in 2017"


Journal ArticleDOI
TL;DR: The results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.
Abstract: Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality. Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.

62 citations


Journal ArticleDOI
TL;DR: The genome sequence, annotation and characteristics of T. thioparus, one of first two isolated strains of inorganic sulfur-oxidising Bacteria, are reported, which is an obligate chemolithoautotroph that conserves energy from the oxidation of reduced in organic sulfur compounds using the Kelly-Trudinger pathway and uses it to fix carbon dioxide.
Abstract: Thiobacillus thioparus DSM 505T is one of first two isolated strains of inorganic sulfur-oxidising Bacteria. The original strain of T. thioparus was lost almost 100 years ago and the working type strain is Culture CT (=DSM 505T = ATCC 8158T) isolated by Starkey in 1934 from agricultural soil at Rutgers University, New Jersey, USA. It is an obligate chemolithoautotroph that conserves energy from the oxidation of reduced inorganic sulfur compounds using the Kelly-Trudinger pathway and uses it to fix carbon dioxide It is not capable of heterotrophic or mixotrophic growth. The strain has a genome size of 3,201,518 bp. Here we report the genome sequence, annotation and characteristics. The genome contains 3,135 protein coding and 62 RNA coding genes. Genes encoding the transaldolase variant of the Calvin-Benson-Bassham cycle were also identified and an operon encoding carboxysomes, along with Smith’s biosynthetic horseshoe in lieu of Krebs’ cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome c oxidase (cbb3, EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). There is a partial sox operon of the Kelly-Friedrich pathway of inorganic sulfur-oxidation that contains soxXYZAB genes but lacking soxCDEF, there is also a lack of the DUF302 gene previously noted in the sox operon of other members of the ‘Proteobacteria’ that can use trithionate as an energy source. In spite of apparently not growing anaerobically with denitrification, the nar, nir, nor and nos operons encoding enzymes of denitrification are found in the T. thioparus genome, in the same arrangements as in the true denitrifier T. denitrificans.

36 citations


Journal ArticleDOI
TL;DR: The first draft genome sequence of the sulfur-oxidizing symbiont of B. thermophilus is reported, which revealed pathways for the use of sulfide and thiosulfate as energy sources and encodes the Calvin-Benson-Bassham cycle for CO2 fixation.
Abstract: Bathymodiolus thermophilus, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic Gammaproteobacteria within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur compounds emanating from the vents as energy source. As the symbiont is uncultured, comprehensive and detailed insights into its metabolism and its interactions with the host can only be obtained from culture-independent approaches such as genomics and proteomics. In this study, we report the first draft genome sequence of the sulfur-oxidizing symbiont of B. thermophilus, here tentatively named Candidatus Thioglobus thermophilus. The draft genome (3.1 Mb) harbors 3045 protein-coding genes. It revealed pathways for the use of sulfide and thiosulfate as energy sources and encodes the Calvin-Benson-Bassham cycle for CO2 fixation. Enzymes required for the synthesis of the tricarboxylic acid cycle intermediates oxaloacetate and succinate were absent, suggesting that these intermediates may be substituted by metabolites from external sources. We also detected a repertoire of genes associated with cell surface adhesion, bacteriotoxicity and phage immunity, which may perform symbiosis-specific roles in the B. thermophilus symbiosis.

33 citations


Journal ArticleDOI
TL;DR: Based on the phylogenetic analysis, ANI and DDH values, it is formally proposed that the novel species, which contains eight strains formed a unique group close to the B. ottawaense branch, is a new species.
Abstract: The type strain of the prospective 10.1601/nm.30737 sp. nov. ERR11T, was isolated from a nodule of the leguminous tree Erythrina brucei native to Ethiopia. The type strain 10.1601/nm.1463 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T, was isolated from the nodules of Lespedeza cuneata in Beijing, China. The genomes of ERR11T and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T were sequenced by DOE-JGI and deposited at the DOE-JGI genome portal as well as at the European Nucleotide Archive. The genome of ERR11T is 9,163,226 bp in length and has 102 scaffolds, containing 8548 protein-coding and 86 RNA genes. The 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T genome is arranged in 108 scaffolds and consists of 8,201,522 bp long and 7776 protein-coding and 85 RNA genes. Both genomes contain symbiotic genes, which are homologous to the genes found in the complete genome sequence of 10.1601/nm.24498 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+110 T. The genes encoding for nodulation and nitrogen fixation in ERR11T showed high sequence similarity with homologous genes found in the draft genome of peanut-nodulating 10.1601/nm.27386 10.1601/strainfinder?urlappend=%3Fid%3DLMG+26795 T. The nodulation genes nolYA-nodD2D1YABCSUIJ-nolO-nodZ of ERR11T and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T are organized in a similar way to the homologous genes identified in the genomes of 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+110 T, 10.1601/nm.25806 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 and 10.1601/nm.1462 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+05525. The genomes harbor hupSLCFHK and hypBFDE genes that code the expression of hydrogenase, an enzyme that helps rhizobia to uptake hydrogen released by the N2-fixation process and genes encoding denitrification functions napEDABC and norCBQD for nitrate and nitric oxide reduction, respectively. The genome of ERR11T also contains nosRZDFYLX genes encoding nitrous oxide reductase. Based on multilocus sequence analysis of housekeeping genes, the novel species, which contains eight strains formed a unique group close to the 10.1601/nm.25806 branch. Genome Average Nucleotide Identity (ANI) calculated between the genome sequences of ERR11T and closely related sequences revealed that strains belonging to 10.1601/nm.25806 branch (10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+15615), were the closest strains to the strain ERR11T with 95.2% ANI. Type strain ERR11T showed the highest DDH predicted value with 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+15615 (58.5%), followed by 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 (53.1%). Nevertheless, the ANI and DDH values obtained between ERR11T and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+15615 or 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 were below the cutoff values (ANI ≥ 96.5%; DDH ≥ 70%) for strains belonging to the same species, suggesting that ERR11T is a new species. Therefore, based on the phylogenetic analysis, ANI and DDH values, we formally propose the creation of 10.1601/nm.30737 sp. nov. with strain ERR11T (10.1601/strainfinder?urlappend=%3Fid%3DHAMBI+3532 T=10.1601/strainfinder?urlappend=%3Fid%3DLMG+30162 T) as the type strain.

26 citations


Journal ArticleDOI
TL;DR: A first draft of the 44.2 Mbp genome assembly of an environmental strain of the fungus Scedosporium apiospermum is reported, showing important differences in terms of annotated genes involved in the hydrocarbon degradation process.
Abstract: Crude oil contamination of soils and waters is a worldwide problem, which has been actively addressed in recent years. Sequencing genomes of microorganisms involved in the degradation of hydrocarbons have allowed the identification of several promoters, genes, and degradation pathways of these contaminants. This knowledge allows a better understanding of the functional dynamics of microbial degradation. Here, we report a first draft of the 44.2 Mbp genome assembly of an environmental strain of the fungus Scedosporium apiospermum. The assembly consisted of 178 high-quality DNA scaffolds with 1.93% of sequence repeats identified. A total of 11,195 protein-coding genes were predicted including a diverse group of gene families involved in hydrocarbon degradation pathways like dioxygenases and cytochrome P450. The metabolic pathways identified in the genome can potentially degrade hydrocarbons like chloroalkane/alkene, chorocyclohexane, and chlorobenzene, benzoate, aminobenzoate, fluorobenzoate, toluene, caprolactam, geraniol, naphthalene, styrene, atrazine, dioxin, xylene, ethylbenzene, and polycyclic aromatic hydrocarbons. The comparison analysis between this strain and the previous sequenced clinical strain showed important differences in terms of annotated genes involved in the hydrocarbon degradation process.

24 citations


Journal ArticleDOI
TL;DR: The phenotype, genome, and phylogeny of fSE1C and fSE4S Salmonella bacteriophage isolated from pickle sauce and ground beef respectively are described and a mosaic relationship between S. enterica serovar Enteritidis phages isolated from Valparaiso, Chile is revealed.
Abstract: Salmonella enterica serovar Enteritidis is one of the most common causes of Salmonellosis worldwide. Utilization of bacteriophages as prophylactic agents is a practical solution to prevent Salmonellosis in ready-to-eat products. Shelf stability is one of the desirable properties for prophylactic bacteriophages. Here, we describe the phenotype, genome, and phylogeny of fSE1C and fSE4S Salmonella bacteriophages. fSE1C and fSE4S were previously isolated from pickle sauce and ground beef respectively and selected for their significant shelf stability. fSE1C and fSE4S showed a broad S. enterica serovar range, infecting several Salmonella serovars. The viral particles showed an icosahedral head structure and flexible tail, a typical morphology of the Siphoviridae family. fSE1C and fSE4C genomes consists of dsDNA of 41,720 bp and 41,768 bp with 49.73% and 49.78% G + C, respectively. Comparative genomic analysis reveals a mosaic relationship between S. enterica serovar Enteritidis phages isolated from Valparaiso, Chile.

24 citations


Journal ArticleDOI
TL;DR: Butyrivibrio hungatei MB2003 was isolated from the plant-adherent fraction of rumen contents from a pasture-grazed New Zealand dairy cow, and was selected for genome sequencing in order to examine its ability to degrade plant polysaccharides.
Abstract: Butyrivibrio hungatei MB2003 was isolated from the plant-adherent fraction of rumen contents from a pasture-grazed New Zealand dairy cow, and was selected for genome sequencing in order to examine its ability to degrade plant polysaccharides. The genome of MB2003 is 3.39 Mb and consists of four replicons; a chromosome, a secondary chromosome or chromid, a megaplasmid and a small plasmid. The genome has an average G + C content of 39.7%, and encodes 2983 putative protein-coding genes. MB2003 is able to use a variety of monosaccharide substrates for growth, with acetate, butyrate and formate as the principal fermentation end-products, and the genes encoding these metabolic pathways have been identified. MB2003 is predicted to encode an extensive repertoire of CAZymes with 78 GHs, 7 CEs, 1 PL and 78 GTs. MB2003 is unable to grow on xylan or pectin, and its role in the rumen appears to be as a utilizer of monosaccharides, disaccharides and oligosaccharides made available by the degradative activities of other bacterial species.

23 citations


Journal ArticleDOI
TL;DR: Automated protocols of PacBio 10 kb library preparation produced libraries with similar technical performance to those generated manually, and the TapeStation System proved to be a reliable method that could be used in a 96-well plate format to QC the DNA equivalent to the standard Bioanalyzers results.
Abstract: The PacBio RS II provides for single molecule, real-time DNA technology to sequence genomes and detect DNA modifications. The starting point for high-quality sequence production is high molecular weight genomic DNA. To automate the library preparation process, there must be high-throughput methods in place to assess the genomic DNA, to ensure the size and amounts of the sheared DNA fragments and final library. The library construction automation was accomplished using the Agilent NGS workstation with Bravo accessories for heating, shaking, cooling, and magnetic bead manipulations for template purification. The quality control methods from gDNA input to final library using the Agilent Bioanalyzer System and Agilent TapeStation System were evaluated. Automated protocols of PacBio 10 kb library preparation produced libraries with similar technical performance to those generated manually. The TapeStation System proved to be a reliable method that could be used in a 96-well plate format to QC the DNA equivalent to the standard Bioanalyzer System results. The DNA Integrity Number that is calculated in the TapeStation System software upon analysis of genomic DNA is quite helpful to assure that the starting genomic DNA is not degraded. In this respect, the gDNA assay on the TapeStation System is preferable to the DNA 12000 assay on the Bioanalyzer System, which cannot run genomic DNA, nor can the Bioanalyzer work directly from the 96-well plates.

22 citations


Journal ArticleDOI
TL;DR: It is proposed that strain S3-2T is the type strain of a new species of Janthinobacterium psychrotolerans sp.
Abstract: Strain S3-2T, isolated from sediment of a frozen freshwater pond, shares 99% 16S rRNA gene sequence identity with strains of the genus Janthinobacterium. Strain S3-2T is a facultative anaerobe that lacks the ability to produce violacein but shows antibiotic resistance, psychrotolerance, incomplete denitrification, and fermentation. The draft genome of strain S3-2T has a size of ~5.8 Mbp and contains 5,297 genes, including 115 RNA genes. Based on the phenotypic properties of the strain, the low in silico DNA-DNA hybridization (DDH) values with related genomes (<35%), and the low whole genome-based average nucleotide identity (ANI) (<86%) with other strains within the genus Janthinobacterium, we propose that strain S3-2T is the type strain (= DSM 102223 = LMG 29653) of a new species within this genus. We propose the name Janthinobacterium psychrotolerans sp. nov. to emphasize the capability of the strain to grow at low temperatures.

21 citations


Journal ArticleDOI
TL;DR: The first whole draft genome sequence of an arsenic-reducing strain belonging to the Fusibacter genus showing the highest 16S rRNA gene sequence similarity (98%) with FusIBacter sp.
Abstract: Fusibacter sp. 3D3 (ATCC BAA-2418) is an arsenate-reducing halotolerant strain within the Firmicutes phylum, isolated from the Salar de Ascotan, a hypersaline salt flat in Northern Chile. This high-Andean closed basin is an athalassohaline environment located at the bottom of a tectonic basin surrounded by mountain range, including some active volcanoes. This landscape can be an advantageous system to explore the effect of salinity on microorganisms that mediate biogeochemical reactions. Since 2000, microbial reduction of arsenic has been evidenced in the system, and the phylogenetic analysis of the original community plus the culture enrichments has revealed the predominance of Firmicutes phylum. Here, we describe the first whole draft genome sequence of an arsenic-reducing strain belonging to the Fusibacter genus showing the highest 16S rRNA gene sequence similarity (98%) with Fusibacter sp. strain Vns02. The draft genome consists of 57 contigs with 5,111,250 bp and an average G + C content of 37.6%. Out of 4780 total genes predicted, 4700 genes code for proteins and 80 genes for RNAs. Insights from the genome sequence and some microbiological features of the strain 3D3 are available under Bioproject accession PRJDB4973 and Biosample SAMD00055724. The release of the genome sequence of this strain could contribute to the understanding of the arsenic biogeochemistry in extreme environments.

21 citations


Journal ArticleDOI
TL;DR: Comparative genomic analysis allowed the identification of genes that may be contributing to enhanced probiotic properties of this strain, and the genes encoding putative mucus binding proteins, collagen-binding proteins, class III bacteriocin and prophage-related genes were identified.
Abstract: The article provides an overview of the genomic features of Lactobacillus fermentum strain 3872. The genomic sequence reported here is one of three L. fermentum genome sequences completed to date. Comparative genomic analysis allowed the identification of genes that may be contributing to enhanced probiotic properties of this strain. In particular, the genes encoding putative mucus binding proteins, collagen-binding proteins, class III bacteriocin, as well as exopolysaccharide and prophage-related genes were identified. Genes related to bacterial aggregation and survival under harsh conditions in the gastrointestinal tract, along with the genes required for vitamin production were also found.

Journal ArticleDOI
TL;DR: The genome of type strain HBR26T of R. aethiopicum sp.
Abstract: Rhizobium aethiopicum sp. nov. is a newly proposed species within the genus Rhizobium. This species includes six rhizobial strains; which were isolated from root nodules of the legume plant Phaseolus vulgaris growing in soils of Ethiopia. The species fixes nitrogen effectively in symbiosis with the host plant P. vulgaris, and is composed of aerobic, Gram-negative staining, rod-shaped bacteria. The genome of type strain HBR26T of R. aethiopicum sp. nov. was one of the rhizobial genomes sequenced as a part of the DOE JGI 2014 Genomic Encyclopedia project designed for soil and plant-associated and newly described type strains. The genome sequence is arranged in 62 scaffolds and consists of 6,557,588 bp length, with a 61% G + C content and 6221 protein-coding and 86 RNAs genes. The genome of HBR26T contains repABC genes (plasmid replication genes) homologous to the genes found in five different Rhizobium etli CFN42T plasmids, suggesting that HBR26T may have five additional replicons other than the chromosome. In the genome of HBR26T, the nodulation genes nodB, nodC, nodS, nodI, nodJ and nodD are located in the same module, and organized in a similar way as nod genes found in the genome of other known common bean-nodulating rhizobial species. nodA gene is found in a different scaffold, but it is also very similar to nodA genes of other bean-nodulating rhizobial strains. Though HBR26T is distinct on the phylogenetic tree and based on ANI analysis (the highest value 90.2% ANI with CFN42T) from other bean-nodulating species, these nod genes and most nitrogen-fixing genes found in the genome of HBR26T share high identity with the corresponding genes of known bean-nodulating rhizobial species (96–100% identity). This suggests that symbiotic genes might be shared between bean-nodulating rhizobia through horizontal gene transfer. R. aethiopicum sp. nov. was grouped into the genus Rhizobium but was distinct from all recognized species of that genus by phylogenetic analyses of combined sequences of the housekeeping genes recA and glnII. The closest reference type strains for HBR26T were R. etli CFN42T (94% similarity of the combined recA and glnII sequences) and Rhizobium bangladeshense BLR175T (93%). Genomic ANI calculation based on protein-coding genes also revealed that the closest reference strains were R. bangladeshense BLR175T and R. etli CFN42T with ANI values 91.8 and 90.2%, respectively. Nevertheless, the ANI values between HBR26T and BLR175T or CFN42T are far lower than the cutoff value of ANI (> = 96%) between strains in the same species, confirming that HBR26T belongs to a novel species. Thus, on the basis of phylogenetic, comparative genomic analyses and ANI results, we formally propose the creation of R. aethiopicum sp. nov. with strain HBR26T (=HAMBI 3550T=LMG 29711T) as the type strain. The genome assembly and annotation data is deposited in the DOE JGI portal and also available at European Nucleotide Archive under accession numbers FMAJ01000001-FMAJ01000062.

Journal ArticleDOI
TL;DR: The release of the genome sequence of this strain improves representation of these extreme acidophilic Gram negative bacteria in public databases and strengthens the framework for further investigation of the physiological diversity and ecological function of A. thiooxidans populations.
Abstract: CLST is an extremely acidophilic gamma-proteobacteria that was isolated from the Gorbea salt flat, an acidic hypersaline environment in northern Chile. This kind of environment is considered a terrestrial analog of ancient Martian terrains and a source of new material for biotechnological applications. plays a key role in industrial bioleaching; it has the capacity of generating and maintaining acidic conditions by producing sulfuric acid and it can also remove sulfur layers from the surface of minerals, which are detrimental for their dissolution. CLST is a strain of able to tolerate moderate chloride concentrations (up to 15 g L−1 Cl−), a feature that is quite unusual in extreme acidophilic microorganisms. Basic microbiological features and genomic properties of this biotechnologically relevant strain are described in this work. The 3,974,949 bp draft genome is arranged into 40 scaffolds of 389 contigs containing 3866 protein-coding genes and 75 RNAs encoding genes. This is the first draft genome of a halotolerant strain. The release of the genome sequence of this strain improves representation of these extreme acidophilic Gram negative bacteria in public databases and strengthens the framework for further investigation of the physiological diversity and ecological function of populations.

Journal ArticleDOI
TL;DR: Phylogenetic analysis shows that Frankia nod genes are more deeply rooted than their sister groups from rhizobia, and PCR-sequencing suggested the widespread occurrence of highly homologous nodA and nodB genes in microsymbionts of field collected Ceanothus americanus.
Abstract: Frankia sp. NRRL B-16219 was directly isolated from a soil sample obtained from the rhizosphere of Ceanothus jepsonii growing in the USA. Its host plant range includes members of Elaeagnaceae species. Phylogenetically, strain NRRL B-16219 is closely related to “Frankia discariae” with a 16S rRNA gene similarity of 99.78%. Because of the lack of genetic tools for Frankia, our understanding of the bacterial signals involved during the plant infection process and the development of actinorhizal root nodules is very limited. Since the first three Frankia genomes were sequenced, additional genome sequences covering more diverse strains have helped provide insight into the depth of the pangenome and attempts to identify bacterial signaling molecules like the rhizobial canonical nod genes. The genome sequence of Frankia sp. strain NRRL B-16219 was generated and assembled into 289 contigs containing 8,032,739 bp with 71.7% GC content. Annotation of the genome identified 6211 protein-coding genes, 561 pseudogenes, 1758 hypothetical proteins and 53 RNA genes including 4 rRNA genes. The NRRL B-16219 draft genome contained genes homologous to the rhizobial common nodulation genes clustered in two areas. The first cluster contains nodACIJH genes whereas the second has nodAB and nodH genes in the upstream region. Phylogenetic analysis shows that Frankia nod genes are more deeply rooted than their sister groups from rhizobia. PCR-sequencing suggested the widespread occurrence of highly homologous nodA and nodB genes in microsymbionts of field collected Ceanothus americanus.

Journal ArticleDOI
TL;DR: The A. fulgidus strain 7324 genome sequence shares about 93.5% sequence identity with that of strain VC16T but is about 138 Kbp longer, which is mostly due to two large ‘insertions’ carrying one extra cdc6 (cell-cycle control protein 6) gene, extra CRISPR elements and mobile genetic elements, a high-GC ncRNA gene (hgcC) and a large number of hypothetical gene functions.
Abstract: Archaeoglobus fulgidus is the type species of genus Archaeoglobus Stetter 1998, a hyperthermophilic sulfate reducing group within the Archaeoglobi class of the euryarchaeota phylum. Members of this genus grow heterotrophically or chemolithoautotrophically with sulfate or thiosulfate as electron acceptors. Except for A. fulgidus strain 7324 and the candidate species “Archaeoglobus lithotrophicus”, which both originate from deep oil-fields, the other members of this genus have been recovered from marine hydrothermal systems. Here we describe the features of the A. fulgidus strain 7324 genome as compared to the A. fulgidus VC16 type strain. The 2.3 Mbp genome sequence of strain 7324 shares about 93.5% sequence identity with that of strain VC16T but is about 138 Kbp longer, which is mostly due to two large ‘insertions’ carrying one extra cdc6 (cell-cycle control protein 6) gene, extra CRISPR elements and mobile genetic elements, a high-GC ncRNA gene (hgcC) and a large number of hypothetical gene functions. A comparison with four other Archaeoglobus spp. genomes identified 1001 core Archaeoglobus genes and more than 2900 pan-genome orthologous genes.

Journal ArticleDOI
TL;DR: The draft genome sequence of D. alkaliphilus strain AHT1T was sequenced by the Joint Genome Institute as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications.
Abstract: Dethiobacter alkaliphilus strain AHT1T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is a Gram-positive bacterium with low GC content, within the phylum Firmicutes. Here we report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1T was sequenced by the Joint Genome Institute (JGI) as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications.

Journal ArticleDOI
TL;DR: A sulfur-oxidizing chemolithoautotrophic bacterium isolated from hydrothermal sediments in Okinawa, Japan, has been used industrially for CO2 bio-mitigation owing to its ability to convert CO2 into C5H8NO4− at a high rate of specific mitigation (0.42 g CO2/cell/h).
Abstract: A sulfur-oxidizing chemolithoautotrophic bacterium, Sulfurovum lithotrophicum 42BKTT, isolated from hydrothermal sediments in Okinawa, Japan, has been used industrially for CO2 bio-mitigation owing to its ability to convert CO2 into C5H8NO4 − at a high rate of specific mitigation (0.42 g CO2/cell/h). The genome of S. lithotrophicum 42BKTT comprised of a single chromosome of 2217,891 bp with 2217 genes, including 2146 protein-coding genes and 54 RNA genes. Here, we present its complete genome-sequence information, including information about the genes encoding enzymes involved in CO2 fixation and sulfur oxidation.

Journal ArticleDOI
TL;DR: The whole genome was sequenced and assembled combining sequences obtained from Illumina MiSeq and Sanger sequencing and resulted in the complete genome sequence which is 4,373,124 bp long and has a GC content of 70.1%.
Abstract: Agromyces aureus AR33T is a Gram-positive, rod-shaped and motile bacterium belonging to the Microbacteriaceae family in the phylum Actinobacteria that was isolated from a former zinc/lead mining and processing site in Austria. In this study, the whole genome was sequenced and assembled combining sequences obtained from Illumina MiSeq and Sanger sequencing. The assembly resulted in the complete genome sequence which is 4,373,124 bp long and has a GC content of 70.1%. Furthermore, we performed a comparative genomic analysis with other related organisms: 6 Agromyces spp., 4 Microbacteriaceae spp. and 2 other members of the class Actinobacteria.

Journal ArticleDOI
TL;DR: Genome analysis revealed genes encoding specialized functions for pathogen suppression, thriving in the rhizosphere and interacting with eukaryotic organisms.
Abstract: Pseudomonas brassicacearum strain L13-6-12 is a rhizosphere colonizer of potato, lettuce and sugar beet. Previous studies have shown that this motile, Gram-negative, non-sporulating bacterium is an effective biocontrol agent against different phytopathogens. Here, we announce and describe the complete genome sequence of P. brassicacearum L13-6-12 consisting of a single 6.7 Mb circular chromosome that consists of 5773 protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes encoding specialized functions for pathogen suppression, thriving in the rhizosphere and interacting with eukaryotic organisms.

Journal ArticleDOI
TL;DR: A high-quality draft genome sequence of V. carpophila is reported from an isolate collected from a peach tree in central Georgia in the United States and will be a useful resource for various studies on the pathogen.
Abstract: Venturia carpophila causes peach scab, a disease that renders peach (Prunus persica) fruit unmarketable. We report a high-quality draft genome sequence (36.9 Mb) of V. carpophila from an isolate collected from a peach tree in central Georgia in the United States. The genome annotation is described and a phylogenetic analysis of the pathogen is presented. The genome sequence will be a useful resource for various studies on the pathogen, including the biology and ecology, taxonomy and phylogeny, host interaction and coevolution, isolation and characterization of genes of interest, and development of molecular markers for genotyping and mapping.

Journal ArticleDOI
TL;DR: The draft genome sequence of Acidithiobacillus albertensis DSM 14366T is presented, thereby both filling a long-standing gap in the genomics of the acidithiabacilli, and providing further insight into the understanding of the biology of the non iron-oxidizing members of the Acidith iobacilli genus.
Abstract: Acidithiobacillus albertensis is an extremely acidophilic, mesophilic, obligatory autotrophic sulfur-oxidizer, with potential importance in the bioleaching of sulfidic metal ores, first described in the 1980s. Here we present the draft genome sequence of Acidithiobacillus albertensis DSM 14366T, thereby both filling a long-standing gap in the genomics of the acidithiobacilli, and providing further insight into the understanding of the biology of the non iron-oxidizing members of the Acidithiobacillus genus. The assembled genome is 3,1 Mb, and contains 47 tRNAs, tmRNA gene and 2 rRNA operons, along with 3149 protein-coding predicted genes. The Whole Genome Shotgun project was deposited in DDBJ/EMBL/GenBank under the accession MOAD00000000.

Journal ArticleDOI
TL;DR: The genomes of two South African Diuraphis noxia (Kurdjumov, Hemiptera: Aphididae) biotypes (SA1 and SAM) are presented after sequencing the genomes of the only two D. noxia biotypes with documented linked genealogy.
Abstract: Although the hemipterans ( Aphididae ) are comprised of roughly 50,000 extant insect species, only four have sequenced genomes that are publically available, namely (pea aphid), (Kissing bug), (Green peach aphid) and (Russian wheat aphid). As a significant proportion of agricultural pests are phloem feeding aphids, it is crucial for sustained global food security that a greater understanding of the genomic and molecular functioning of this family be elucidated. Recently, the genome of US D. noxia biotype US2 was sequenced but its assembly only incorporated ~ 32% of produced reads and contained a surprisingly low gene count when compared to that of the model/first sequenced aphid, . To this end, we present here the genomes of two South African (Kurdjumov, Hemiptera : Aphididae ) biotypes (SA1 and SAM), obtained after sequencing the genomes of the only two D. noxia biotypes with documented linked genealogy. To better understand overall targets and patterns of heterozygosity, we also sequenced a pooled sample of 9 geographically separated D. noxia populations (MixIX). We assembled a 399 Mb reference genome ( PRJNA297165 , representing 64% of the projected genome size 623 Mb) using ± 28 Gb of 101 bp paired-end HiSeq2000 reads from the D. noxia biotype SAM, whilst ± 13 Gb 101 bp paired-end HiSeq2000 reads from the D. noxia biotype SA1 were generated to facilitate genomic comparisons between the two biotypes. Sequencing the MixIX sample yielded ±26 Gb 50 bp paired-end SOLiD reads which facilitated SNP detection when compared to the D. noxia biotype SAM assembly. Ab initio gene calling produced a total of 31,885 protein coding genes from the assembled contigs spanning ~ 399 Mb (GCA_001465515.1).

Journal ArticleDOI
TL;DR: The first complete genome sequence of Yangia sp.
Abstract: Yangia sp. CCB-MM3 was one of several halophilic bacteria isolated from soil sediment in the estuarine Matang Mangrove, Malaysia. So far, no member from the genus Yangia, a member of the Rhodobacteraceae family, has been reported sequenced. In the current study, we present the first complete genome sequence of Yangia sp. strain CCB-MM3. The genome includes two chromosomes and five plasmids with a total length of 5,522,061 bp and an average GC content of 65%. Since a different strain of Yangia sp. (ND199) was reported to produce a polyhydroxyalkanoate copolymer, the ability for this production was tested in vitro and confirmed for strain CCB-MM3. Analysis of its genome sequence confirmed presence of a pathway for production of propionyl-CoA and gene cluster for PHA production in the sequenced strain. The genome sequence described will be a useful resource for understanding the physiology and metabolic potential of Yangia as well as for comparative genomic analysis with other Rhodobacteraceae.

Journal ArticleDOI
TL;DR: The genome sequence of Pectobacterium carotovorum strain SCC1, a Finnish soft rot model strain isolated from a diseased potato tuber in the early 1980’s is reported.
Abstract: Bacteria of the genus Pectobacterium are economically important plant pathogens that cause soft rot disease on a wide variety of plant species. Here, we report the genome sequence of Pectobacterium carotovorum strain SCC1, a Finnish soft rot model strain isolated from a diseased potato tuber in the early 1980’s. The genome of strain SCC1 consists of one circular chromosome of 4,974,798 bp and one circular plasmid of 5524 bp. In total 4451 genes were predicted, of which 4349 are protein coding and 102 are RNA genes.

Journal ArticleDOI
Mengwei Yao1, Wenman Li1, Zihong Duan1, Yinliang Zhang1, Rong Jia1 
TL;DR: The high-quality draft genome sequence of I. lacteus F17, isolated from a decaying hardwood tree in the vicinity of Hefei, China, provides insights into the mechanisms of the efficient lignin decomposition of this strain.
Abstract: Irpex lacteus, a cosmopolitan white-rot fungus, degrades lignin and lignin-derived aromatic compounds. In this study, we report the high-quality draft genome sequence of I. lacteus F17, isolated from a decaying hardwood tree in the vicinity of Hefei, China. The genome is 44,362,654 bp, with a GC content of 49.64% and a total of 10,391 predicted protein-coding genes. In addition, a total of 18 snRNA, 842 tRNA, 15 rRNA operons and 11,710 repetitive sequences were also identified. The genomic data provides insights into the mechanisms of the efficient lignin decomposition of this strain.

Journal ArticleDOI
TL;DR: Comparison genome analysis revealed that the 2A-2B strain had the greatest identity with Bacillus velezensis, and was an indolacetic acid producer, and a plant inducer of PR1, which is an induced systemic resistance related gene in chili pepper plantlets.
Abstract: A Bacillus velezensis strain from the rhizosphere of Sporobolus airoides (Torr.) Torr., a grass in central-north Mexico, was isolated during a biocontrol of phytopathogens scrutiny study. The 2A-2B strain exhibited at least 60% of growth inhibition of virulent isolates of phytopathogens causing root rot. These phytopathogens include Phytophthora capsici, Fusarium solani, Fusarium oxysporum and Rhizoctonia solani. Furthermore, the 2A-2B strain is an indolacetic acid producer, and a plant inducer of PR1, which is an induced systemic resistance related gene in chili pepper plantlets. Whole genome sequencing was performed to generate a draft genome assembly of 3.953 MB with 46.36% of GC content, and a N50 of 294,737. The genome contains 3713 protein coding genes and 89 RNA genes. Moreover, comparative genome analysis revealed that the 2A-2B strain had the greatest identity (98.4%) with Bacillus velezensis.

Journal ArticleDOI
TL;DR: The features of the strain Ola 51T are summarized and the complete genome sequence is described, which contains one circular chromosome of 5,303,342 nucleotides with 54.01% GC content.
Abstract: Strain Ola 51T (=LMG 24251T = CGMCC 1.7012T) is the type strain of the species Kosakonia oryzae and was isolated from surface-sterilized roots of the wild rice species Oryza latifolia grown in Guangdong, China. Here we summarize the features of the strain Ola 51T and describe its complete genome sequence. The genome contains one circular chromosome of 5,303,342 nucleotides with 54.01% GC content, 4773 protein-coding genes, 16 rRNA genes, 76 tRNA genes, 13 ncRNA genes, 48 pseudo genes, and 1 CRISPR array.

Journal ArticleDOI
TL;DR: The information gained from the genome gives a greater insight in the functional role of L. profundi LP1T in the biofilm and its adaption strategy in an extreme environment.
Abstract: Lutibacter profundi LP1T within the family Flavobacteriaceae was isolated from a biofilm growing on the surface of a black smoker chimney at the Loki’s Castle vent field, located on the Arctic Mid-Ocean Ridge. The complete genome of L. profundi LP1T is the first genome to be published within the genus Lutibacter. L. profundi LP1T consists of a single 2,966,978 bp circular chromosome with a GC content of 29.8%. The genome comprises 2,537 protein-coding genes, 40 tRNA species and 2 rRNA operons. The microaerophilic, organotrophic isolate contains genes for all central carbohydrate metabolic pathways. However, genes for the oxidative branch of the pentose-phosphate-pathway, the glyoxylate shunt of the tricarboxylic acid cycle and the ATP citrate lyase for reverse TCA are not present. L. profundi LP1T utilizes starch, sucrose and diverse proteinous carbon sources. In accordance, the genome harbours 130 proteases and 104 carbohydrate-active enzymes, indicating a specialization in degrading organic matter. Among a small arsenal of 24 glycosyl hydrolases, which offer the possibility to hydrolyse diverse poly- and oligosaccharides, a starch utilization cluster was identified. Furthermore, a variety of enzymes may be secreted via T9SS and contribute to the hydrolytic variety of the microorganism. Genes for gliding motility are present, which may enable the bacteria to move within the biofilm. A substantial number of genes encoding for extracellular polysaccharide synthesis pathways, curli fibres and attachment to surfaces could mediate adhesion in the biofilm and may contribute to the biofilm formation. In addition to aerobic respiration, the complete denitrification pathway and genes for sulphide oxidation e.g. sulphide:quinone reductase are present in the genome. sulphide:quinone reductase and denitrification may serve as detoxification systems allowing L. profundi LP1T to thrive in a sulphide and nitrate enriched environment. The information gained from the genome gives a greater insight in the functional role of L. profundi LP1T in the biofilm and its adaption strategy in an extreme environment.

Journal ArticleDOI
TL;DR: The genome analysis of this strain helps to better understand the mechanism by which the microbe efficiently tolerates arsenic in the arsenic-contaminated environment.
Abstract: Arthrobacter sp. B6 is a Gram-positive, non-motile, facultative aerobic bacterium, isolated from the arsenic-contaminated aquifer sediment in the Datong basin, China. This strain displays high resistance to arsenic, and can dynamically transform arsenic under aerobic condition. Here, we described the high quality draft genome sequence, annotations and the features of Arthrobacter sp. B6. The G + C content of the genome is 64.67%. This strain has a genome size of 4,663,437 bp; the genome is arranged in 8 scaffolds that contain 25 contigs. From the sequences, 3956 protein-coding genes, 264 pseudo genes and 89 tRNA/rRNA-encoding genes were identified. The genome analysis of this strain helps to better understand the mechanism by which the microbe efficiently tolerates arsenic in the arsenic-contaminated environment.

Journal ArticleDOI
TL;DR: Targeted enrichment of dominant nitrate-reducing bacteria post injection resulted in the isolation of Pseudomonas stutzeri strain RCH2, a complete denitrifier of chromium contaminated aquifer that could reduce Cr(VI) and Fe(III).
Abstract: Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water in several DOE sites, including Hanford 100 H area. In order to stimulate microbially mediated reduction of Cr(VI) at this site, a poly-lactate hydrogen release compound was injected into the chromium contaminated aquifer. Targeted enrichment of dominant nitrate-reducing bacteria post injection resulted in the isolation of Pseudomonas stutzeri strain RCH2. P. stutzeri strain RCH2 was isolated using acetate as the electron donor and is a complete denitrifier. Experiments with anaerobic washed cell suspension of strain RCH2 revealed it could reduce Cr(VI) and Fe(III). The genome of strain RCH2 was sequenced using a combination of Illumina and 454 sequencing technologies and contained a circular chromosome of 4.6 Mb and three plasmids. Global genome comparisons of strain RCH2 with six other fully sequenced P. stutzeri strains revealed most genomic regions are conserved, however strain RCH2 has an additional 244 genes, some of which are involved in chemotaxis, Flp pilus biogenesis and pyruvate/2-oxogluturate complex formation.