scispace - formally typeset
Search or ask a question

Showing papers by "R. Cid Fernandes published in 2013"


Journal ArticleDOI
TL;DR: In this article, the authors presented the largest and most homogeneous catalog of HII regions and associations compiled so far, consisting of more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey.
Abstract: We present the largest and most homogeneous catalog of HII regions and associations compiled so far. The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey. We describe the procedures used to detect, select, and analyse the spectroscopic properties of these ionized regions. In the current study we focus on the characterization of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojected distribution of HII regions. We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of alpha = -0.1 dex/re between 0.3 and 2 disk effective radii, and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius. The slope is independent of morphology, incidence of bars, absolute magnitude or mass. Only those galaxies with evidence of interactions and/or clear merging systems present a significant shallower gradient, consistent with previous results. The majority of the 94 galaxies with H ii regions detected beyond 2 disk effective radii present a flattening in the oxygen abundance. The flattening is statistically significant. We cannot provide with a conclusive answer regarding the origin of this flattening. However, our results indicate that its origin is most probably related to the secular evolution of galaxies. Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies. All of them are non-interacting, mostly unbarred, Sb/Sbc galaxies. This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes.

434 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used integral field spectroscopic data from the CALIFA survey to compare the observed radial surface brightness profiles with what is expected from illumination by an AGN.
Abstract: Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years this was attributed to a central mass-accreting supermassive black hole (AGN) of low luminosity, making LINER galaxies the largest AGN-sub-population, dominating in numbers over higher luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Using integral field spectroscopic data from the CALIFA survey, we aim at comparing the observed radial surface brightness profiles with what is expected from illumination by an AGN. Essential for this analysis is a proper extraction of emission-lines, especially weak lines such as the Balmer Hb line which is superposed on an absorption trough. To accomplish this, we use the GANDALF code which simultaneously fits the underlying stellar continuum and emission lines. We show for 48 galaxies with LINER-like emission, that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with gas present and stars older than ~1 Gyr, unless a stronger radiation field from young hot stars or an AGN outshines them. This means that galaxies with LINER-like emission are in fact not a class defined by a property, but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.

269 citations


Journal ArticleDOI
TL;DR: In this paper, the authors derived a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion lower than the one already reported in the literature (σ_Δlog(O/H) = 0.07 dex).
Abstract: We studied the global and local ℳ-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2−3 effective radii), with a resolution high enough to separate individual H II regions and/or aggregations. About 3000 individual H II regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise ratio to derive the oxygen abundance and star-formation rate associated with each region. In addition, we computed the integrated and spatially resolved stellar masses (and surface densities) based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion lower than the one already reported in the literature (σ_Δlog (O/H) = 0.07 dex). Indeed, this dispersion is only slightly higher than the typical error derived for our oxygen abundances. However, we found no secondary relation with the star-formation rate other than the one induced by the primary relation of this quantity with the stellar mass. The analysis for our sample of ~3000 individual H II regions confirms (i) a local mass-metallicity relation and (ii) the lack of a secondary relation with the star-formation rate. The same analysis was performed with similar results for the specific star-formation rate. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, such like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk-dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.

252 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used integral field spectroscopic data from the CALIFA survey to compare the observed radial surface brightness profiles with what is expected from illumination by an AGN.
Abstract: Context. Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years, this was attributed to a central mass-accreting supermassive black hole (more commonly known as active galactic nucleus, AGN) of low luminosity, making LINER galaxies the largest AGN sub-population, which dominate in numbers over higher luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Aims. Using integral field spectroscopic data from the CALIFA survey, we compare the observed radial surface brightness profiles with what is expected from illumination by an AGN. Methods. Essential for this analysis is a proper extraction of emission lines, especially weak lines, such as Balmer H beta lines, which are superposed on an absorption trough. To accomplish this, we use the GANDALF code, which simultaneously fits the underlying stellar continuum and emission lines. Results. For 48 galaxies with LINER-like emission, we show that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. Conclusions. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with the gas present and with stars older than ~1 Gyr unless a stronger radiation field from young hot stars or an AGN outshines them. This means that galaxies with LINER-like emission are not a class defined by a property but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.

251 citations


Journal ArticleDOI
TL;DR: In this article, the authors applied the fossil record method of stellar population spectral synthesis to recover the spatially and time resolved star formation history of each galaxy, and showed that the signal of downsizing is spatially preserved with both inner and outer regions growing faster for more massive galaxies.
Abstract: The growth of galaxies is one of the key problems in understanding the structure and evolution of the universe and its constituents. Galaxies can grow their stellar mass by accretion of halo or intergalactic gas clouds, or by merging with smaller or similar mass galaxies. The gas available translates into a rate of star formation, which controls the generation of metals in the universe. The spatially resolved history of their stellar mass assembly has not been obtained so far for any given galaxy beyond the Local Group. Here we demonstrate how massive galaxies grow their stellar mass inside-out. We report the results from the analysis of the first 105 galaxies of the largest three-dimensional spectroscopic survey to date of galaxies in the local universe (CALIFA). We apply the fossil record method of stellar population spectral synthesis to recover the spatially and time resolved star formation history of each galaxy. We show, for the first time, that the signal of downsizing is spatially preserved, with both inner and outer regions growing faster for more massive galaxies. Further, we show that the relative growth rate of the spheroidal component, nucleus, and inner galaxy, which happened 5-7 Gyr ago, shows a maximum at a critical stellar mass ~7 × 1010 M ☉. We also find that galaxies less massive than ~1010 M ☉ show a transition to outside-in growth, thus connecting with results from resolved studies of the growth of low-mass galaxies.

237 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies) and computed the integrated and spatially resolved stellar masses and surface densities, based on SDSS photometric data.
Abstract: We present the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2-3 effective radii), with enough resolution to separate individual HII regions and/or aggregations. Nearly $\sim$3000 individual HII regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise to derive the oxygen abundance and star-formation rate associated with each region. In addition, we have computed the integrated and spatially resolved stellar masses (and surface densities), based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion smaller than the one already reported in the literature ($\sigma_{\Delta{\rm log(O/H)}}=$0.07 dex). Indeed, this dispersion is only slightly larger than the typical error derived for our oxygen abundances. However, we do not find any secondary relation with the star-formation rate, other than the one induced due to the primary relation of this quantity with the stellar mass. We confirm the result using the $\sim$3000 individual HII regions, for the corresponding local relations. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.

220 citations


Journal ArticleDOI
TL;DR: The second public data release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey as discussed by the authors contains over 1.5 million spectra.
Abstract: This paper describes the Second Public Data Release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. The data for 200 objects are made public, including the 100 galaxies of the First Public Data Release (DR1). Data were obtained with the integral-field spectrograph PMAS /PPak mounted on the 3.5 m telescope at the Calar Alto observatory. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the wavelength range 3745-7500 A with a spectral resolution of 6.0 A (FWHM); and (ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 A with a spectral resolution of 2.3 A (FWHM). The sample covers a redshift range between 0.005 and 0.03, with a wide range of properties in the color-magnitude diagram, stellar mass, ionization conditions, and morphological types. All the cubes in the data release were reduced with the latest pipeline, which includes improved spectrophotometric calibration, spatial registration, and spatial resolution. The spectrophotometric calibration is better than 6% and the median spatial resolution is 2´´ 4. In total, the second data release contains over 1.5 million spectra.

218 citations


Journal ArticleDOI
TL;DR: In this article, an end-to-end pipeline is developed to extract spectra, including propagated errors and bad-pixel flags, feed the spectra into the STARLIGHT spectral synthesis code, and pack the results for all galaxy zones into a single file.
Abstract: Fossil record methods based on spectral synthesis techniques have matured over the past decade, and their application to integrated galaxy spectra fostered substantial advances on the understanding of galaxies and their evolution. Yet, because of the lack of spatial resolution, these studies are limited to a global view, providing no information about the internal physics of galaxies. Motivated by the CALIFA survey, which is gathering Integral Field Spectroscopy over the full optical extent of 600 galaxies, we have developed an end-to-end pipeline which: (i) partitions the observed data cube into Voronoi zones in order to, when necessary and taking due account of correlated errors, increase the S/N, (ii) extracts spectra, including propagated errors and bad-pixel flags, (iii) feeds the spectra into the STARLIGHT spectral synthesis code, (iv) packs the results for all galaxy zones into a single file, (v) performs a series of post-processing operations, including zone-to-pixel image reconstruction and unpacking the spectral and stellar population properties into multi-dimensional time, metallicity, and spatial coordinates. This paper provides an illustrated description of this whole pipeline and its products. Using data for the nearby spiral NGC 2916 as a show case, we go through each of the steps involved, presenting ways of visualizing and analyzing this manifold. These include 2D maps of properties such as the v-field, stellar extinction, mean ages and metallicities, mass surface densities, star formation rates on different time scales and normalized in different ways, 1D averages in the temporal and spatial dimensions, projections of the stellar light and mass growth (x,y,t) cubes onto radius-age diagrams, etc. The results illustrate the richness of the combination of IFS data with spectral synthesis, providing a glimpse of what is to come from CALIFA and future surveys. (Abridged)

185 citations


Journal ArticleDOI
TL;DR: The radial structure of the stellar mass surface density and stellar population age as a function of the total stellar mass and morphology for a sample of 107 galaxies from the CALIFA survey was studied in this article.
Abstract: We study the radial structure of the stellar mass surface density ($\mu$) and stellar population age as a function of the total stellar mass and morphology for a sample of 107 galaxies from the CALIFA survey. We use the fossil record to recover the star formation history (SFH) in spheroidal and disk dominated galaxies with masses from 10$^9$ to 10$^{12}$ M$_\odot$. We derive the half mass radius, and we find that galaxies are on average 15% more compact in mass than in light. HMR/HLR decreases with increasing mass for disk galaxies, but is almost constant in spheroidal galaxies. We find that the galaxy-averaged stellar population age, stellar extinction, and $\mu$ are well represented by their values at 1 HLR. Negative radial gradients of the stellar population ages support an inside-out formation. The larger inner age gradients occur in the most massive disk galaxies that have the most prominent bulges; shallower age gradients are obtained in spheroids of similar mass. Disk and spheroidal galaxies show negative $\mu$ gradients that steepen with stellar mass. In spheroidal galaxies $\mu$ saturates at a critical value that is independent of the galaxy mass. Thus, all the massive spheroidal galaxies have similar local $\mu$ at the same radius (in HLR units). The SFH of the regions beyond 1 HLR are well correlated with their local $\mu$, and follow the same relation as the galaxy-averaged age and $\mu$; suggesting that local stellar mass surface density preserves the SFH of disks. The SFH of bulges are, however, more fundamentally related to the total stellar mass, since the radial structure of the stellar age changes with galaxy mass even though all the spheroid dominated galaxies have similar radial structure in $\mu$. Thus, galaxy mass is a more fundamental property in spheroidal systems while the local stellar mass surface density is more important in disks.

178 citations


Journal ArticleDOI
TL;DR: In this article, an end-to-end pipeline is developed to extract spectra, including propagated errors and bad-pixel flags, feed the spectra into the STARLIGHT spectral synthesis code, and pack the results for all galaxy zones into a single file.
Abstract: Fossil record methods based on spectral synthesis techniques have matured over the past decade, and their application to integrated galaxy spectra fostered substantial advances on the understanding of galaxies and their evolution. Yet, because of the lack of spatial resolution, these studies are limited to a global view, providing no information about the internal physics of galaxies. Motivated by the CALIFA survey, which is gathering Integral Field Spectroscopy over the full optical extent of 600 galaxies, we have developed an end-to-end pipeline which: (i) partitions the observed data cube into Voronoi zones in order to, when necessary and taking due account of correlated errors, increase the S/N, (ii) extracts spectra, including propagated errors and bad-pixel flags, (iii) feeds the spectra into the STARLIGHT spectral synthesis code, (iv) packs the results for all galaxy zones into a single file, (v) performs a series of post-processing operations, including zone-to-pixel image reconstruction and unpacking the spectral and stellar population properties into multi-dimensional time, metallicity, and spatial coordinates. This paper provides an illustrated description of this whole pipeline and its products. Using data for the nearby spiral NGC 2916 as a show case, we go through each of the steps involved, presenting ways of visualizing and analyzing this manifold. These include 2D maps of properties such as the v-field, stellar extinction, mean ages and metallicities, mass surface densities, star formation rates on different time scales and normalized in different ways, 1D averages in the temporal and spatial dimensions, projections of the stellar light and mass growth (x,y,t) cubes onto radius-age diagrams, etc. The results illustrate the richness of the combination of IFS data with spectral synthesis, providing a glimpse of what is to come from CALIFA and future surveys. (Abridged)

168 citations


Journal ArticleDOI
TL;DR: In this article, uncertainties due to noise and spectral shape calibration errors and to the synthesis method are investigated by means of a suite of simulations based on 1638 CALIFA spectra for NGC 2916, with perturbations amplitudes gauged in terms of the expected errors.
Abstract: In a companion paper we have presented many products derived from the application of the spectral synthesis code STARLIGHT to datacubes from the CALIFA survey, including 2D maps of stellar population properties and 1D averages in the temporal and spatial dimensions. Here we evaluate the uncertainties in these products. Uncertainties due to noise and spectral shape calibration errors and to the synthesis method are investigated by means of a suite of simulations based on 1638 CALIFA spectra for NGC 2916, with perturbations amplitudes gauged in terms of the expected errors. A separate study was conducted to assess uncertainties related to the choice of evolutionary synthesis models. We compare results obtained with the Bruzual & Charlot models, a preliminary update of them, and a combination of spectra derived from the Granada and MILES models. About 100k CALIFA spectra are used in this comparison. Noise and shape-related errors at the level expected for CALIFA propagate to 0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities. Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16 mag for shape errors. Higher order products such as SFHs are more uncertain, but still relatively stable. Due to the large number statistics of datacubes, spatial averaging reduces uncertainties while preserving information on the history and structure of stellar populations. Radial profiles of global properties, as well as SFHs averaged over different regions are much more stable than for individual spaxels. Uncertainties related to the choice of base models are larger than those associated with data and method. Differences in mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V. Spectral residuals are ~ 1% on average, but with systematic features of up to 4%. The origin of these features is discussed. (Abridged)

Journal ArticleDOI
TL;DR: In this paper, the authors applied the fossil record method of stellar population spectral synthesis to recover the spatially and time resolved star formation history of each galaxy, showing that the signal of downsizing is spatially preserved, with both inner and outer regions growing faster for more massive galaxies.
Abstract: The growth of galaxies is one of the key problems in understanding the structure and evolution of the universe and its constituents. Galaxies can grow their stellar mass by accretion of halo or intergalactic gas clouds, or by merging with smaller or similar mass galaxies. The gas available translates into a rate of star formation, which controls the generation of metals in the universe. The spatially resolved history of their stellar mass assembly has not been obtained so far for any given galaxy beyond the Local Group. Here we demonstrate how massive galaxies grow their stellar mass inside-out. We report the results from the analysis of the first 105 galaxies of the largest to date three-dimensional spectroscopic survey of galaxies in the local universe (CALIFA). We apply the fossil record method of stellar population spectral synthesis to recover the spatially and time resolved star formation history of each galaxy. We show, for the first time, that the signal of downsizing is spatially preserved, with both inner and outer regions growing faster for more massive galaxies. Further, we show that the relative growth rate of the spheroidal component, nucleus and inner galaxy, that happened 5-7 Gyr ago, shows a maximum at a critical stellar mass ~10^10 Msun. We also find that galaxies less massive than ~10^10 Msun show a transition to outside-in growth, thus connecting with results from resolved studies of the growth of low mass galaxies.