scispace - formally typeset
Search or ask a question

Showing papers by "Roger K. Butlin published in 2012"


Journal ArticleDOI
TL;DR: A distillation of questions about the mechanisms of speciation, the genetic basis of speciating and the relationship between speciation and diversity are presented.
Abstract: Speciation has been a major focus of evolutionary biology research in recent years, with many important advances. However, some of the traditional organising principles of the subject area no longer provide a satisfactory framework, such as the classification of speciation mechanisms by geographical context into allopatric, parapatric and sympatry classes. Therefore, we have asked where speciation research should be directed in the coming years. Here, we present a distillation of questions about the mechanisms of speciation, the genetic basis of speciation and the relationship between speciation and diversity. Our list of topics is not exhaustive; rather we aim to promote discussion on research priorities and on the common themes that underlie disparate speciation processes.

396 citations


Journal ArticleDOI
TL;DR: This study offers the first indication that some chemoreceptor genes, often tightly linked together in the genome, could play a key role in local adaptation and reproductive isolation in the pea aphid and potentially other phytophagous insects.
Abstract: Understanding the drivers of speciation is critical to interpreting patterns of biodiversity. The identification of the genetic changes underlying adaptation and reproductive isolation is necessary to link barriers to gene flow to the causal origins of divergence. Here, we present a novel approach to the genetics of speciation, which should complement the commonly used approaches of quantitative trait locus mapping and genome-wide scans for selection. We present a large-scale candidate gene approach by means of sequence capture, applied to identifying the genetic changes underlying reproductive isolation in the pea aphid, a model system for the study of ecological speciation. Targeted resequencing enabled us to scale up the candidate gene approach, specifically testing for the role of chemosensory gene families in host plant specialization. Screening for the signature of divergence under selection at 172 candidate and noncandidate loci, we revealed a handful of loci that show high levels of differentiation among host races, which almost all correspond to odorant and gustatory receptor genes. This study offers the first indication that some chemoreceptor genes, often tightly linked together in the genome, could play a key role in local adaptation and reproductive isolation in the pea aphid and potentially other phytophagous insects. Our approach opens a new route toward the functional genomics of ecological speciation.

110 citations


Journal ArticleDOI
TL;DR: In this article, an amplified fragment length polymorphism (AFLP)-based genome scan across the recently expanded UK range of the Brown Argus butterfly, Aricia agestis, and used outlier-based (DFDIST and BayeScan) and association-based statistical approaches to identify signatures of evolutionary change associated with range expansion and habitat use.
Abstract: Poleward range expansions are widespread responses to recent climate change and are crucial for the future persistence of many species. However, evolutionary change in traits such as colonization history and habitat preference may also be necessary to track environmental change across a fragmented landscape. Understanding the likelihood and speed of such adaptive change is important in determining the rate of species extinction with ongoing climate change. We conducted an amplified fragment length polymorphism (AFLP)-based genome scan across the recently expanded UK range of the Brown Argus butterfly, Aricia agestis, and used outlier-based (DFDIST and BayeScan) and association-based (Isolation-By-Adaptation) statistical approaches to identify signatures of evolutionary change associated with range expansion and habitat use. We present evidence for (i) limited effects of range expansion on population genetic structure and (ii) strong signatures of selection at approximately 5% AFLP loci associated with both the poleward range expansion of A. agestis and differences in habitat use across longestablished and recently colonized sites. Patterns of allele frequency variation at these candidate loci suggest that adaptation to new habitats at the range margin has involved selection on genetic variation in habitat use found across the long-established part of the range. Our results suggest that evolutionary change is likely to affect species’ responses to climate change and that genetic variation in ecological traits across species’ distributions should be maximized to facilitate range shifts across a fragmented landscape, particularly in species that show strong associations with particular habitats.

59 citations


Journal ArticleDOI
TL;DR: This work compared published bat microsatellites with their homologues in the genome sequence of the little brown bat, Myotis lucifugus, to create consensus sequences that were used to design candidate primer sets and tested for amplification and polymorphism in 22 species of bat from nine of the largest families.
Abstract: Comparative ecological and behavioural studies of the widespread and diverse Vespertilionidae, which comprise almost 400 of the 1100 bat species, have been limited by the availability of markers. The potential of new methods for developing conserved microsatellite markers that possess enhanced cross-species utility has recently been illustrated in studies of birds. We have applied these methods to develop enhanced microsatellite markers for vespertilionid bats, in particular for the genus Myotis (103 species). We compared published bat microsatellites with their homologues in the genome sequence of the little brown bat, Myotis lucifugus, to create consensus sequences that were used to design candidate primer sets. Primer sets were then tested for amplification and polymorphism in 22 species of bat from nine of the largest families (including 11 Vespertilionidae). Of 46 loci tested, 33 were polymorphic, on average, in each of seven Myotis species tested, 20 in each of four species in other vespertilionid genera, and two in 11 nonvespertilionid species.

37 citations


Journal ArticleDOI
TL;DR: The nature and targets of sexual selection on song, CHCs, and both traits combined within the populations of Drosophila montana were characterized and a character previously shown to be important for species recognition, interpulse interval, was found to be under sexual selection.
Abstract: Sexual selection has the potential to contribute to population divergence and speciation. Most studies of sexual selection in Drosophila have concentrated on a single signaling modality, usually either courtship song or cuticular hydrocarbons (CHCs), which can act as contact pheromones. We have examined the relationship between both signal types and reproductive success using F1–3 offspring of wild-collected flies, raised in the lab. We used two populations of the Holarctic species Drosophila montana that represent different phylogeographic clades that have been separate for ca. 0.5 million years (MY), and differ to some extent in both traits. Here, we characterize the nature and identify the targets of sexual selection on song, CHCs, and both traits combined within the populations. Three measures of courtship outcome were used as fitness proxies. They were the probability of mating, mating latency, and the production of rejection song by females, and showed patterns of association with different traits that included both linear and quadratic selection. Courtship song predicted courtship outcome better than CHCs and the signal modalities acted in an additive rather than synergistic manner. Selection was generally consistent in direction and strength between the two populations and favored males that sang more vigorously. Sexual selection differed in the extent, strength, and nature on some of the traits between populations. However, the differences in the directionality of selection detected were not a good predictor of population differences. In addition, a character previously shown to be important for species recognition, interpulse interval, was found to be under sexual selection. Our results highlight the complexity of understanding the relationship between within-population sexual selection and population differences. Sexual selection alone cannot predict differences between populations.

36 citations


Journal ArticleDOI
TL;DR: This work proposes and describes three independent criteria underlying ten different evolutionary scenarios in which habitat choice may promote or maintain local adaptation in the intertidal gastropod Littorina saxatilis, assessing whether any of the proposed scenarios can be reliably distinguished, given current research.
Abstract: The role of habitat choice in reproductive isolation and ecological speciation has often been overlooked, despite acknowledgement of its ability to facilitate local adaptation It can form part of the speciation process through various evolutionary mechanisms, yet where habitat choice has been included in models of ecological speciation little thought has been given to these underlying mechanisms Here, we propose and describe three independent criteria underlying ten different evolutionary scenarios in which habitat choice may promote or maintain local adaptation The scenarios are the result of all possible combinations of the independent criteria, providing a conceptual framework in which to discuss examples which illustrate each scenario These examples show that the different roles of habitat choice in ecological speciation have rarely been effectively distinguished Making such distinctions is an important challenge for the future, allowing better experimental design, stronger inferences and more meaningful comparisons among systems We show some of the practical difficulties involved by reviewing the current evidence for the role of habitat choice in local adaptation and reproductive isolation in the intertidal gastropod Littorina saxatilis, a model system for the study of ecological speciation, assessing whether any of the proposed scenarios can be reliably distinguished, given current research

31 citations


Journal ArticleDOI
TL;DR: An interactive, searchable expressed sequence tag database for the periwinkle snail Littorina saxatilis, an upcoming model species in evolutionary biology, and allows access to UniProt annotations, blast output, protein family domains (PFAM) and Gene Ontology.
Abstract: We present an interactive, searchable expressed sequence tag database for the periwinkle snail Littorina saxatilis, an upcoming model species in evolutionary biology. The database is the result of a hybrid assembly between Sanger and 454 sequences, 1290 and 147 491 sequences respectively. Normalized and non-normalized cDNA was obtained from different ecotypes of L. saxatilis collected in the UK and Sweden. The Littorina sequence database (LSD) contains 26 537 different contigs, of which 2453 showed similarity with annotated proteins in UniProt. Querying the LSD permits the selection of the taxonomic origin of blast hits for each contig, and the search can be restricted to particular taxonomic groups. The database allows access to UniProt annotations, blast output, protein family domains (PFAM) and Gene Ontology. The database will allow users to search for genetic markers and identifying candidate genes or genes for expression analyses. It is open for additional deposition of sequence information for L. saxatilis and other species of the genus Littorina. The LSD is available at http://mbio-serv2.mbioekol.lu.se/Littorina/. (Less)

19 citations


Journal ArticleDOI
TL;DR: Evidence suggests that genetic variation in the cuticular hydrocarbon profile of F. exsecta ants resulted in differences among patrilines, but they were obscured in the colony environment, thereby avoiding costly nepotistic behaviors.
Abstract: Chemical recognition cues are used to discriminate among species, con-specifics, and potentially between patrilines in social insect colonies. There is an ongoing debate about the possible persistence of patriline cues despite evidence for the mixing of colony odors via a "gestalt" mechanism in social insects, because patriline recognition could lead to nepotism. We analyzed the variation in recognition cues (cuticular hydrocarbons) with different mating frequencies or queen numbers in 688 Formica exsecta ants from 76 colonies. We found no increase in the profile variance as genetic diversity increased, indicating that patriline effects were absent or possibly obscured by a gestalt mechanism. We then demonstrated that an isolated individual's profile changed considerably relative to their colony profile, before stabilizing after 5 days. We used these isolated individuals to eliminate the masking effects of the gestalt mechanism, and we detected a weak but statistically significant patriline effect in isolated adult workers and also in newly emerged callow workers. Thus, our evidence suggests that genetic variation in the cuticular hydrocarbon profile of F. exsecta ants (n-alkanes and alkenes) resulted in differences among patrilines, but they were obscured in the colony environment, thereby avoiding costly nepotistic behaviors.

14 citations


Journal ArticleDOI
15 Aug 2012-Heredity
TL;DR: The efforts to characterize a set of outlier AFLP markers from a previous genome scan with CE in ocellated lizards (Lacerta lepida), which reveal remarkable interspecific conservation in outlier loci sequences.
Abstract: In the last few years, dozens of studies have documented the detection of loci influenced by selection from genome scans in a wide range of non-model species. Many of those studies used amplified fragment length polymorphism (AFLP) markers, which became popular for being easily applicable to any organism. However, because they are anonymous markers, AFLPs impose many challenges for their isolation and identification. Most recent AFLP genome scans used capillary electrophoresis (CE), which adds even more obstacles to the isolation of bands with a specific size for sequencing. These caveats might explain the extremely low number of studies that moved from the detection of outlier AFLP markers to their actual isolation and characterization. We document our efforts to characterize a set of outlier AFLP markers from a previous genome scan with CE in ocellated lizards (Lacerta lepida). Seven outliers were successfully isolated, cloned and sequenced. Their sequences are noncoding and show internal indels or polymorphic repetitive elements (microsatellites). Three outliers were converted into codominant markers by using specific internal primers to sequence and screen population variability from undigested DNA. Amplification in closely related lizard species was also achieved, revealing remarkable interspecific conservation in outlier loci sequences. We stress the importance of following up AFLP genome scans to validate selection signatures of outlier loci, but also report the main challenges and pitfalls that may be faced during the process.

14 citations


Journal ArticleDOI
11 Jan 2012-Heredity
TL;DR: Results indicate that loci in two different regions of the genome control distinct features of the courtship song, and characters related to song pulse properties mapped to the region of chromosome 2 near the candidate gene fruitless, identifying these genes as suitable loci for further investigations.
Abstract: Acoustic signals often have a significant role in pair formation and in species recognition. Determining the genetic basis of signal divergence will help to understand signal evolution by sexual selection and its role in the speciation process. An earlier study investigated quantitative trait locus for male courtship song carrier frequency (FRE) in Drosophila montana using microsatellite markers. We refined this study by adding to the linkage map markers for 10 candidate genes known to affect song production in Drosophila melanogaster. We also extended the analyses to additional song characters (pulse train length (PTL), pulse number (PN), interpulse interval, pulse length (PL) and cycle number (CN)). Our results indicate that loci in two different regions of the genome control distinct features of the courtship song. Pulse train traits (PTL and PN) mapped to the X chromosome, showing significant linkage with the period gene. In contrast, characters related to song pulse properties (PL, CN and carrier FRE) mapped to the region of chromosome 2 near the candidate gene fruitless, identifying these genes as suitable loci for further investigations. In previous studies, the pulse train traits have been found to vary substantially between Drosophila species, and so are potential species recognition signals, while the pulse traits may be more important in intra-specific mate choice.

10 citations


Journal ArticleDOI
04 Jun 2012-PLOS ONE
TL;DR: Revealing strong and consistent patterns within a complex hybrid zone will allow more focused examination of the causes of variation in bimodality in mixed populations, in particular the roles of local selection versus habitat heterogeneity and gene flow between differentiated populations.
Abstract: Understanding why some hybrid zones are bimodal and others unimodal can aid in identifying barriers to gene exchange following secondary contact. The hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi contains a mix of allopatric parental populations and inter-mingled bimodal and unimodal sympatric populations, and provides an ideal system to examine the roles of local selection and gene flow between populations in maintaining bimodality. However, it is first necessary to confirm, over a larger spatial scale, previously identified associations between population composition and season and habitat. Here we use cline-fitting of one morphological and one song trait along two valley transects, and intervening mountains, to confirm previously identified habitat associations (mountain versus valley) and seasonal changes in population composition. As expected from previous findings of studies on a smaller spatial scale, C. jacobsi dominated mountain habitats and mixed populations dominated valleys, and C. brunneus became more prevalent in August. Controlling for habitat and incorporating into the analysis seasonal changes in cline parameters and the standard errors of parental trait values revealed wider clines than previous studies (best estimates of 6.4 to 24.5 km in our study versus 2.8 to 4.7 km in previous studies) and increased percentage of trait variance explained (52.7% and 61.5% for transects 1 and 2 respectively, versus 17.6%). Revealing such strong and consistent patterns within a complex hybrid zone will allow more focused examination of the causes of variation in bimodality in mixed populations, in particular the roles of local selection versus habitat heterogeneity and gene flow between differentiated populations.

Journal ArticleDOI
TL;DR: Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia, and mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion.

Journal ArticleDOI
10 Oct 2012-PLOS ONE
TL;DR: A genome scan of three chromosomal races of the grasshopper Vandiemenella viatica, occurring on Kangaroo Island, South Australia, using 1517 AFLP loci demonstrated that chromosomal race accounted for a significant proportion of the genetic variance in the total dataset, which concurred with the findings of an earlier study.
Abstract: In the past decade the interest surrounding the role of recombination in speciation has been re-kindled by a new generation of chromosomal speciation models that invoke the recombination-suppression properties of some types of chromosomal rearrangement. A common prediction of recombination-suppression models is that gene exchange between diverging populations will be more restricted in regions of the genome that experience low recombination. We carried out a genome scan of three chromosomal races of the grasshopper Vandiemenella viatica (Orthoptera: Morabinae), occurring on Kangaroo Island, South Australia, using 1517 AFLP loci, with a view to elucidating the roles that selection and chromosomal variation have played in the formation of these taxa. An analysis of molecular variance demonstrated that chromosomal race accounted for a significant proportion of the genetic variance in the total dataset, which concurred with the findings of an earlier study. Sampling across one previously-identified hybrid zone, and the identification of outlier loci between parental races allowed us to establish that, in admixed populations, outlier loci which potentially pre-date the isolation of populations of races on Kangaroo Island exhibit higher levels of linkage disequilibrium with each other than putatively neutral loci. In turn this suggests that they might reside within genomic regions of low recombination, or be closely linked with each other.