scispace - formally typeset
Search or ask a question
Institution

Bauhaus University, Weimar

EducationWeimar, Thüringen, Germany
About: Bauhaus University, Weimar is a education organization based out in Weimar, Thüringen, Germany. It is known for research contribution in the topics: Finite element method & Isogeometric analysis. The organization has 1421 authors who have published 2998 publications receiving 104454 citations. The organization is also known as: Bauhaus-Universität Weimar & Hochschule für Architektur und Bauwesen.


Papers
More filters
Proceedings ArticleDOI
30 Jul 2006
TL;DR: An innovative algorithm is presented that dynamically adjusts the content of the input images before radiometric compensation is carried out, which reduces the perceived visual artifacts while simultaneously preserving a maximum of luminance and contrast.
Abstract: We present a real-time algorithm for dynamically adjusting radiometric compensation depending on the image content. This reduces the perception of clipping errors by simultaneously preserving a maximum of luminance and contrast. The algorithm is implemented entirely on the GPU and runs in real-time.

65 citations

Book ChapterDOI
25 Sep 2017
TL;DR: The state of the art of technological advancements that machine learning tools, in particular, have brought for materials design innovation are reviewed and the potential of such novel computational tools are discussed.
Abstract: Computational materials design is a rapidly evolving field of challenges and opportunities aiming at development and application of multi-scale methods to simulate, predict and select innovative materials with high accuracy. Today the latest advancements in machine learning, deep learning, internet of things (IoT), big data, and intelligent optimization have highly revolutionized the computational methodologies used for materials design innovation. Such novelties in computation enable the development of problem-specific solvers with vast potential applications in industry and business. This paper reviews the state of the art of technological advancements that machine learning tools, in particular, have brought for materials design innovation. Further via presenting a case study the potential of such novel computational tools are discussed for the virtual design and simulation of innovative materials in modeling the fundamental properties and behavior of a wide range of multi-scale materials design problems.

64 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of RHA blending on workability, strength and durability of high performance fine-grained concrete (HPFGC) is presented, and the results show that the addition of Rice Husk Ash (RHA) to HPFGC improved significantly compressive strength, splitting tensile strength and chloride penetration resistance.
Abstract: Rice husk ash (RHA) is classified as a highly reactive pozzolan. It has a very high silica content similar to that of silica fume (SF). Using less-expensive and locally available RHA as a mineral admixture in concrete brings ample benefits to the costs, the technical properties of concrete as well as to the environment. An experimental study of the effect of RHA blending on workability, strength and durability of high performance fine-grained concrete (HPFGC) is presented. The results show that the addition of RHA to HPFGC improved significantly compressive strength, splitting tensile strength and chloride penetration resistance. Interestingly, the ratio of compressive strength to splitting tensile strength of HPFGC was lower than that of ordinary concrete, especially for the concrete made with 20 % RHA. Compressive strength and splitting tensile strength of HPFGC containing RHA was similar and slightly higher, respectively, than for HPFGC containing SF. Chloride penetration resistance of HPFGC containing 10–15 % RHA was comparable with that of HPFGC containing 10 % SF.

64 citations

Journal ArticleDOI
TL;DR: In this article, an edge-based smoothed finite method (ES-FEM) is proposed for analysis of laminated composite plates, where the stiffness matrix is established by using the strain smoothing technique over the smoothing domains associated with the edges of the triangular elements.
Abstract: This paper promotes a novel numerical approach to static, free vibration and buckling analyses of laminated composite plates by an edge-based smoothed finite method (ES-FEM). In the present ES-FEM formulation, the system stiffness matrix is established by using the strain smoothing technique over the smoothing domains associated with the edges of the triangular elements. A discrete shear gap (DSG3) technique without shear locking is combined into the ES-FEM to give a so-called edge-based smoothed discrete shear gap method (ES-DSG3) for analysis of laminated composite plates. The present method uses only linear interpolations and its implementation into finite element programs is quite simple. Numerical results for analysis of laminated composite plates show that the ES-DSG3 performs quite well compared to several other published approaches in the literature.

64 citations

Journal ArticleDOI
TL;DR: In this paper, metakaolin was used to synthesize metaka-based polyopolymers for hardening and burning and the phase transformation after burning was measured by X-ray diffraction and quantified.

64 citations


Authors

Showing all 1443 results

NameH-indexPapersCitations
Timon Rabczuk9972735893
Adri C. T. van Duin7948926911
Paolo Rosso5654112757
Xiaoying Zhuang5427110082
Benno Stein533409880
Jin-Wu Jiang521757661
Gordon Wetzstein512589793
Goangseup Zi451538411
Bohayra Mortazavi441625802
Thorsten Hennig-Thurau4412317542
Jörg Hoffmann402007785
Martin Potthast401906563
Pedro M. A. Areias381075908
Amir Mosavi384326209
Guido De Roeck382748063
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

83% related

Georgia Institute of Technology
119K papers, 4.6M citations

83% related

Carnegie Mellon University
104.3K papers, 5.9M citations

83% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

82% related

Microsoft
86.9K papers, 4.1M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202321
202260
2021224
2020249
2019247
2018273