scispace - formally typeset
Search or ask a question
Institution

Bauhaus University, Weimar

EducationWeimar, Thüringen, Germany
About: Bauhaus University, Weimar is a education organization based out in Weimar, Thüringen, Germany. It is known for research contribution in the topics: Finite element method & Isogeometric analysis. The organization has 1421 authors who have published 2998 publications receiving 104454 citations. The organization is also known as: Bauhaus-Universität Weimar & Hochschule für Architektur und Bauwesen.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors compared four methods for measuring soil total suction in laboratory: the noncontact filter paper method, the psychrometer technique, the relative humidity (RH) sensor, and the chilled-mirror hygrometer approach.
Abstract: This study assessed four methods for measuring soil total suction in laboratory: the noncontact filter paper method, the psychrometer technique, the relative humidity (RH) sensor, and the chilled-mirror hygrometer technique. Our aim in this study was to compare the four total suction measurement techniques, especially the psychrometer method and the RH sensor, which may be used for field total suction measurements. While field application of the sensors is the eventual concern, no field measurements were performed in the study. Assessment was made using two bentonite–sand mixtures, which can be used as clay liner for landfills. A discussion of factors influencing measurement accuracy is also provided. The chilled-mirror hygrometer technique appears to give the most accurate results, and therefore may be used as a benchmark for assessing the accuracy of the three other methods. For the bentonite–sand mixture used in this study, the total suction measured using the noncontact filter paper technique represents values at a quasi-equilibrium state after redistribution of water in the specimen, instead of the total suction at as-compacted state. The RH sensor provided a faster response than the psychrometer technique. However, the RH sensor exhibited a systematic error in the small suction range.

108 citations

Journal ArticleDOI
TL;DR: In this article, a review on the mechanical properties and applications of nanoresonators is presented, and an extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed.
Abstract: Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators.

107 citations

Journal ArticleDOI
TL;DR: A groundwater compatibility study was conducted by analyzing Electrical conductivity (EC), total dissolved solids (TDS), Chloride (Cl), Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), Sulfate (SO4), Total hardness (TH), Bicarbonate (HCO3), pH, carbonate (CO3) and Sodium Adsorption Ratio (SAR) obtained from 39 wells in the time period from 2003 to 2014 as discussed by the authors.
Abstract: Identification and management of the groundwater quality are of utmost importance for maintaining freshwater resources in arid and semi-arid areas, which is essential for sustainable development. Based on the quality of the groundwater in various areas, local policymakers and water resource managers can allocate the usage of resources for either drinking or agricultural purposes. This research aims to identify suitable areas of water pumping for drinking and agricultural harvest in the Tabriz aquifer, located in East Azerbaijan province, northwest Iran. A groundwater compatibility study was conducted by analyzing Electrical conductivity (EC), total dissolved solids (TDS), Chloride (Cl), Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), Sulfate (SO4), Total hardness (TH), Bicarbonate (HCO3), pH, carbonate (CO3), the and Sodium Adsorption Ratio (SAR) obtained from 39 wells in the time period from 2003 to 2014. The Water Quality Index (WQI) and irrigation water quality (IWQ) index are respectively utilized due to their high importance in identifying the quality of water resources for irrigation and drinking purposes. The WQI index zoning for drinking classified water as excellent, good, or poor. The study concludes that most drinking water harvested for urban and rural areas is ‘excellent water’ or ‘good water’. The IWQ index average for the study area is reported to be in the range of 25.9 to 34.55. The results further revealed that about 37 percent (296 km2) of groundwater has high compatibility, and 63 percent of the study area (495 km2) has average compatibility for agricultural purposes. The trend of IWQ and WQI indexes demonstrates that groundwater quality has been declining over time.

107 citations

Journal ArticleDOI
TL;DR: Biodiesel can easily be used as an alternative fuel in diesel engines and can be produced from low-cost feedstocks such as waste cooking oil (WCO) as discussed by the authors.
Abstract: Biodiesel can easily be used as an alternative fuel in diesel engines. It is environmentally friendly and can be produced from low-cost feedstocks such as waste cooking oil (WCO). WCO contains a si...

107 citations

Journal ArticleDOI
TL;DR: In this article, an integrated model using ELM to predict the concluding growth amount of sugarcane was proposed and further compared with artificial neural network (ANN) and genetic programming models.
Abstract: Management strategies for sustainable sugarcane production need to deal with the increasing complexity and variability of the whole sugar system. Moreover, they need to accommodate the multiple goals of different industry sectors and the wider community. Traditional disciplinary approaches are unable to provide integrated management solutions, and an approach based on whole systems analysis is essential to bring about beneficial change to industry and the community. The application of this approach to water management, environmental management and cane supply management is outlined, where the literature indicates that the application of extreme learning machine (ELM) has never been explored in this realm. Consequently, the leading objective of the current research was set to filling this gap by applying ELM to launch swift and accurate model for crop production data-driven. The key learning has been the need for innovation both in the technical aspects of system function underpinned by modelling of sugarcane growth. Therefore, the current study is an attempt to establish an integrate model using ELM to predict the concluding growth amount of sugarcane. Prediction results were evaluated and further compared with artificial neural network (ANN) and genetic programming models. Accuracy of the ELM model is calculated using the statistics indicators of Root Means Square Error (RMSE), Pearson Coefficient (r), and Coefficient of Determination (R2) with promising results of 0.8, 0.47, and 0.89, respectively. The results also show better generalization ability in addition to faster learning curve. Thus, proficiency of the ELM for supplementary work on advancement of prediction model for sugarcane growth was approved with promising results.

107 citations


Authors

Showing all 1443 results

NameH-indexPapersCitations
Timon Rabczuk9972735893
Adri C. T. van Duin7948926911
Paolo Rosso5654112757
Xiaoying Zhuang5427110082
Benno Stein533409880
Jin-Wu Jiang521757661
Gordon Wetzstein512589793
Goangseup Zi451538411
Bohayra Mortazavi441625802
Thorsten Hennig-Thurau4412317542
Jörg Hoffmann402007785
Martin Potthast401906563
Pedro M. A. Areias381075908
Amir Mosavi384326209
Guido De Roeck382748063
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

83% related

Georgia Institute of Technology
119K papers, 4.6M citations

83% related

Carnegie Mellon University
104.3K papers, 5.9M citations

83% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

82% related

Microsoft
86.9K papers, 4.1M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202321
202260
2021224
2020249
2019247
2018273