scispace - formally typeset
Search or ask a question
Institution

Eli Lilly and Company

CompanyIndianapolis, Indiana, United States
About: Eli Lilly and Company is a company organization based out in Indianapolis, Indiana, United States. It is known for research contribution in the topics: Population & Receptor. The organization has 17826 authors who have published 22835 publications receiving 946714 citations. The organization is also known as: Eli Lily.
Topics: Population, Receptor, Placebo, Insulin, Agonist


Papers
More filters
Journal ArticleDOI
TL;DR: The data strongly suggest that activated microglia rather than astrocytes express PBRs following ischemic insults, and lend further support to the application of 3H-PK11195 binding as a marker of neuronal injury in the brain.
Abstract: In mammalian brain the expression of peripheral benzodiazepine receptors (PBRs) can be markedly induced following different types of neuronal injury. PBRs are believed to be expressed on non-neuronal cells in the brain, yet the specific cell type that expresses these receptors following CNS insult has not been defined. In the present study, we investigated the effects of transient global forebrain ischemia on PBRs by autoradiographic localization of 3H-PK11195 binding. The distribution of PBRs was compared to glial fibrillary acidic protein (GFAP) as a marker for astrocytes and OX42 as a marker for microglia. Five to 6 d following four-vessel occlusion (4-VO), an increase in PBRs was seen in the CA1 region of all 15 brains examined. In brains from rats subjected to 4-VO, microglia were selectively activated in stratum pyramidale of the CA1 layer. In contrast, astrocytes appeared to be activated in multiple hippocampal cell layers including stratum radiatum and stratum oriens. Activated astrocytes were also found in regions that did not exhibit increased 3H-PK11195 binding. In some brains, selected regions of secondary lesion, specifically necrotic thalamic nuclei and the isocortex were found to be strongly immunoreactive for OX42 but lacked GFAP immunoreactive cells. In adjacent sections, these same regions displayed high densities of 3H-PK1195 binding. These observations lend further support to the application of 3H-PK11195 binding as a marker of neuronal injury in the brain. Furthermore, the data strongly suggest that activated microglia rather than astrocytes express PBRs following ischemic insults.

216 citations

Journal ArticleDOI
TL;DR: A 2.1 kb (1 kb = 10(3) base-pairs) segment of DNA from the streptomycete bacteriophage phi C31 was found to be sufficient to direct site-specific integration of plasmid vectors in Streptomyces ambofaciens and StrePTomyces fradiae in the absence of any streptomecete origin of replication.

216 citations

Journal ArticleDOI
TL;DR: This work provides a perspective on the qualification and verification of physiologically based pharmacokinetic (PBPK) platforms/models intended for regulatory submission based on the collective experience of the Simcyp Consortium members.
Abstract: This work provides a perspective on the qualification and verification of physiologically based pharmacokinetic (PBPK) platforms/models intended for regulatory submission based on the collective experience of the Simcyp Consortium members. Examples of regulatory submission of PBPK analyses across various intended applications are presented and discussed. European Medicines Agency (EMA) and US Food and Drug Administration (FDA) recent draft guidelines regarding PBPK analyses and reporting are encouraging, and to advance the use and acceptability of PBPK analyses, more clarity and flexibility are warranted.

216 citations

Journal ArticleDOI
TL;DR: In this paper, in vitro methods for assessing human Hepatic Drug Metabolism: Their use in Drug Development are presented. But they do not consider the effects of the drugs on the human body.
Abstract: (1993). In Vitro Methods for Assessing Human Hepatic Drug Metabolism: Their use in Drug Development. Drug Metabolism Reviews: Vol. 25, No. 4, pp. 453-484.

216 citations

Journal ArticleDOI
TL;DR: Results show that a selective inhibitor of the TGFβR-I kinase can potentiate radiation responses in glioblastoma by coordinately increasing apoptosis and cancer stem-like cells targeting while blocking DNA damage repair, invasion, mesenchymal transition, and angiogenesis.
Abstract: Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor that tends to be resistant to the ionizing radiotherapy used to treat it. Because TGF-β is a modifier of radiation responses, we conducted a preclinical study of the antitumor effects of the TGF-β receptor (TGFβR) I kinase inhibitor LY2109761 in combination with radiotherapy. LY2109761 reduced clonogenicity and increased radiosensitivity in GBM cell lines and cancer stem-like cells, augmenting the tumor growth delay produced by fractionated radiotherapy in a supra-additive manner in vivo. In an orthotopic intracranial model, LY2109761 significantly reduced tumor growth, prolonged survival, and extended the prolongation of survival induced by radiation treatment. Histologic analyses showed that LY2109761 inhibited tumor invasion promoted by radiation, reduced tumor microvessel density, and attenuated mesenchymal transition. Microarray-based gene expression analysis revealed signaling effects of the combinatorial treatments that supported an interpretation of their basis. Together, these results show that a selective inhibitor of the TGFβR-I kinase can potentiate radiation responses in glioblastoma by coordinately increasing apoptosis and cancer stem-like cells targeting while blocking DNA damage repair, invasion, mesenchymal transition, and angiogenesis. Our findings offer a sound rationale for positioning TGFβR kinase inhibitors as radiosensitizers to improve the treatment of glioblastoma.

215 citations


Authors

Showing all 17866 results

NameH-indexPapersCitations
Mark J. Daly204763304452
Irving L. Weissman2011141172504
Eric J. Topol1931373151025
Tony Hunter175593124726
Xiang Zhang1541733117576
Jerrold M. Olefsky14359577356
Stephen F. Badylak13353057083
George A. Bray131896100975
Lloyd Paul Aiello13150685550
Levi A. Garraway12936699989
Mark Sullivan12680263916
James A. Russell124102487929
Tony L. Yaksh12380660898
Elisabetta Dejana12243048254
Hagop S. Akiskal11856550869
Network Information
Related Institutions (5)
Pfizer
37.4K papers, 1.6M citations

98% related

Merck & Co.
48K papers, 1.9M citations

97% related

Novartis
50.5K papers, 1.9M citations

97% related

Hoffmann-La Roche
43K papers, 1.6M citations

93% related

National Institutes of Health
297.8K papers, 21.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202287
2021815
2020868
2019732
2018742