scispace - formally typeset
Search or ask a question
Institution

Fritz Haber Institute of the Max Planck Society

FacilityBerlin, Germany
About: Fritz Haber Institute of the Max Planck Society is a facility organization based out in Berlin, Germany. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 3490 authors who have published 5017 publications receiving 183731 citations. The organization is also known as: Fritz Haber Institute of the Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: This second release of i-PI not only includes several new advanced path integral methods, but also offers other classes of algorithms that are moving towards becoming a universal force engine that is both modular and tightly coupled to the driver codes that evaluate the potential energy surface and its derivatives.

238 citations

Journal ArticleDOI
TL;DR: This study on atomically dispersed Ni species brings new fundamental understanding of Ni active sites for reactions involving CO2 and clearly evidence the limits of single-atom catalysis for complex reactions.
Abstract: We report on the activation of CO2 on Ni single-atom catalysts. These catalysts were synthesized using a solid solution approach by controlled substitution of 1–10 atom % of Mg2+ by Ni2+ inside the MgO structure. The Ni atoms are preferentially located on the surface of the MgO and, as predicted by hybrid-functional calculations, favor low-coordinated sites. The isolated Ni atoms are active for CO2 conversion through the reverse water–gas shift (rWGS) but are unable to conduct its further hydrogenation to CH4 (or MeOH), for which Ni clusters are needed. The CO formation rates correlate linearly with the concentration of Ni on the surface evidenced by XPS and microcalorimetry. The calculations show that the substitution of Mg atoms by Ni atoms on the surface of the oxide structure reduces the strength of the CO2 binding at low-coordinated sites and also promotes H2 dissociation. Astonishingly, the single-atom catalysts stayed stable over 100 h on stream, after which no clusters or particle formation could ...

236 citations

Journal ArticleDOI
TL;DR: In this paper, the Ar-ion bombardment and annealing at 700 K ((0001) and (0001)) and 825 K (1010) were used for the preparation of ZnO faces.

235 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the production of low-energy electrons in amorphous medium-sized water clusters, which simulate water molecules in an aqueous environment, and identify a hitherto unrecognized extra source of lowenergy electrons produced by a non-local autoionization process called intermolecular coulombic decay (ICD).
Abstract: Most of the low-energy electrons emitted from a material when it is subjected to ionization radiation are believed to be directly ionized secondary electrons. Coincidence measurements of the electrons ejected from water clusters suggests many are produced by a quantitatively new mechanism, known as intermolecular Coulombic decay. Low-energy electrons are the most abundant product of ionizing radiation in condensed matter. The origin of these electrons is most commonly understood to be secondary electrons1 ionized from core or valence levels by incident radiation and slowed by multiple inelastic scattering events. Here, we investigate the production of low-energy electrons in amorphous medium-sized water clusters, which simulate water molecules in an aqueous environment. We identify a hitherto unrecognized extra source of low-energy electrons produced by a non-local autoionization process called intermolecular coulombic decay2 (ICD). The unequivocal signature of this process is observed in coincidence measurements of low-energy electrons and photoelectrons generated from inner-valence states with vacuum-ultraviolet light. As ICD is expected to take place universally in weakly bound aggregates containing light atoms between carbon and neon in the periodic table2,3, these results could have implications for our understanding of ionization damage in living tissues.

233 citations


Authors

Showing all 3514 results

NameH-indexPapersCitations
Jens K. Nørskov184706146151
Qiang Zhang1611137100950
William A. Goddard1511653123322
Matthias Scheffler12575261011
Tao Zhang123277283866
Gerhard Ertl12072057560
James A. Dumesic11861558935
Angel Rubio11093052731
Pavel Hobza10756448080
Hans-Joachim Freund10696246693
Xinhe Bao10382846524
Peter Strasser10035737374
Dang Sheng Su9961536117
Robert Schlögl9270633795
Gianfranco Pacchioni9162232262
Network Information
Related Institutions (5)
Forschungszentrum Jülich
35.6K papers, 994.1K citations

83% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

University of Stuttgart
56.3K papers, 1.3M citations

81% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202271
2021242
2020236
2019209
2018173