scispace - formally typeset
Search or ask a question
Institution

Helsinki Institute for Information Technology

FacilityEspoo, Finland
About: Helsinki Institute for Information Technology is a facility organization based out in Espoo, Finland. It is known for research contribution in the topics: Population & Bayesian network. The organization has 630 authors who have published 1962 publications receiving 63426 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper reformulates the problem definition in a way that it is able to obtain an algorithm with constant-factor approximation guarantee, and presents a new approach that improves over the existing techniques, both in theory and practice.
Abstract: Finding dense subgraphs is an important problem in graph mining and has many practical applications. At the same time, while large real-world networks are known to have many communities that are not well-separated, the majority of the existing work focuses on the problem of finding a single densest subgraph. Hence, it is natural to consider the question of finding the top-kdensest subgraphs. One major challenge in addressing this question is how to handle overlaps: eliminating overlaps completely is one option, but this may lead to extracting subgraphs not as dense as it would be possible by allowing a limited amount of overlap. Furthermore, overlaps are desirable as in most real-world graphs there are vertices that belong to more than one community, and thus, to more than one densest subgraph. In this paper we study the problem of finding top-koverlapping densest subgraphs, and we present a new approach that improves over the existing techniques, both in theory and practice. First, we reformulate the problem definition in a way that we are able to obtain an algorithm with constant-factor approximation guarantee. Our approach relies on using techniques for solving the max-sum diversification problem, which however, we need to extend in order to make them applicable to our setting. Second, we evaluate our algorithm on a collection of benchmark datasets and show that it convincingly outperforms the previous methods, both in terms of quality and efficiency.

56 citations

Proceedings Article
09 Jul 2008
TL;DR: This paper generalize and combine the two approaches to Independent Component Analysis, to yield a method able to learn the model structure in many cases for which the previous methods provide answers that are either incorrect or are not as informative as possible.
Abstract: An important task in data analysis is the discovery of causal relationships between observed variables. For continuous-valued data, linear acyclic causal models are commonly used to model the data-generating process, and the inference of such models is a well-studied problem. However, existing methods have significant limitations. Methods based on conditional independencies (Spirtes et al. 1993; Pearl 2000) cannot distinguish between independence-equivalent models, whereas approaches purely based on Independent Component Analysis (Shimizu et al. 2006) are inapplicable to data which is partially Gaussian. In this paper, we generalize and combine the two approaches, to yield a method able to learn the model structure in many cases for which the previous methods provide answers that are either incorrect or are not as informative as possible. We give exact graphical conditions for when two distinct models represent the same family of distributions, and empirically demonstrate the power of our method through thorough simulations.

56 citations

Journal ArticleDOI
TL;DR: If the identified critical roles of the drivers are not accounted for, a migration to a fully automated metro system can affect the quality of service and raise safety issues, according to the conclusion of this research.

56 citations

Journal ArticleDOI
TL;DR: This paper extends redescription mining to categorical and real‐valued data with possibly missing values using a surprisingly simple and efficient approach and shows the statistical significance of the results using recent innovations on randomization methods.
Abstract: Redescription mining is a powerful data analysis tool that is used to find multiple descriptions of the same entities. Consider geographical regions as an example. They can be characterized by the fauna that inhabits them on one hand and by their meteorological conditions on the other hand. Finding such redescriptors, a task known as niche-finding, is of much importance in biology. Current redescription mining methods cannot handle other than Boolean data. This restricts the range of possible applications or makes discretization a pre-requisite, entailing a possibly harmful loss of information. In niche-finding, while the fauna can be naturally represented using a Boolean presence/absence data, the weather cannot. In this paper, we extend redescription mining to categorical and real-valued data with possibly missing values using a surprisingly simple and efficient approach. We provide extensive experimental evaluation to study the behavior of the proposed algorithm. Furthermore, we show the statistical significance of our results using recent innovations on randomization methods. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining, 2012 (Part of this work was done when the author was with HIIT.)

56 citations

Journal ArticleDOI
TL;DR: The Breeze application provides a complete solution for data quality assessment, dose–response curve fitting and quantification of the drug responses along with interactive visualization of the results.
Abstract: Summary High-throughput screening (HTS) enables systematic testing of thousands of chemical compounds for potential use as investigational and therapeutic agents. HTS experiments are often conducted in multi-well plates that inherently bear technical and experimental sources of error. Thus, HTS data processing requires the use of robust quality control procedures before analysis and interpretation. Here, we have implemented an open-source analysis application, Breeze, an integrated quality control and data analysis application for HTS data. Furthermore, Breeze enables a reliable way to identify individual drug sensitivity and resistance patterns in cell lines or patient-derived samples for functional precision medicine applications. The Breeze application provides a complete solution for data quality assessment, dose-response curve fitting and quantification of the drug responses along with interactive visualization of the results. Availability and implementation The Breeze application with video tutorial and technical documentation is accessible at https://breeze.fimm.fi; the R source code is publicly available at https://github.com/potdarswapnil/Breeze under GNU General Public License v3.0. Contact swapnil.potdar@helsinki.fi. Supplementary information Supplementary data are available at Bioinformatics online.

56 citations


Authors

Showing all 632 results

NameH-indexPapersCitations
Dimitri P. Bertsekas9433285939
Olli Kallioniemi9035342021
Heikki Mannila7229526500
Jukka Corander6641117220
Jaakko Kangasjärvi6214617096
Aapo Hyvärinen6130144146
Samuel Kaski5852214180
Nadarajah Asokan5832711947
Aristides Gionis5829219300
Hannu Toivonen5619219316
Nicola Zamboni5312811397
Jorma Rissanen5215122720
Tero Aittokallio522718689
Juha Veijola5226119588
Juho Hamari5117616631
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

93% related

Microsoft
86.9K papers, 4.1M citations

93% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Facebook
10.9K papers, 570.1K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20224
202185
202097
2019140
2018127