scispace - formally typeset
Search or ask a question
Institution

Helsinki University of Technology

About: Helsinki University of Technology is a based out in . It is known for research contribution in the topics: Artificial neural network & Finite element method. The organization has 8962 authors who have published 20136 publications receiving 723787 citations. The organization is also known as: TKK & Teknillinen korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: A sequential clique percolation algorithm (SCP) is presented to do fast community detection in weighted and unweighted networks, for cliques of a chosen size and can simultaneously produce a dendrogram representation of hierarchical community structure.
Abstract: In complex network research clique percolation, introduced by Palla, Der\'enyi, and Vicsek [Nature (London) 435, 814 (2005)], is a deterministic community detection method which allows for overlapping communities and is purely based on local topological properties of a network. Here we present a sequential clique percolation algorithm (SCP) to do fast community detection in weighted and unweighted networks, for cliques of a chosen size. This method is based on sequentially inserting the constituent links to the network and simultaneously keeping track of the emerging community structure. Unlike existing algorithms, the SCP method allows for detecting $k$-clique communities at multiple weight thresholds in a single run, and can simultaneously produce a dendrogram representation of hierarchical community structure. In sparse weighted networks, the SCP algorithm can also be used for implementing the weighted clique percolation method recently introduced by Farkas et al. [New J. Phys. 9, 180 (2007)]. The computational time of the SCP algorithm scales linearly with the number of $k$-cliques in the network. As an example, the method is applied to a product association network, revealing its nested community structure.

239 citations

Journal ArticleDOI
TL;DR: It is shown that the maximum achievable diversity order in a block-fading channel with finite interleaving depends not only on the number of subchannels L, but also on the code rate R and that the performance can only marginally be improved by increasing the block length of the code.
Abstract: This paper considers coded diversity schemes over block-fading Rician channels using random coding techniques. Two random coding upper bounds on the error probability of block codes are derived: a new bound and a simpler but looser bound assuming binary input distribution. Also, a new lower bound for any block code is derived using the strong converse to channel coding theorem. The lower bound shows that the new random coding upper bound is quite tight. Furthermore, it is shown that the maximum achievable diversity order in a block-fading channel with finite interleaving depends not only on the number of subchannels L, but also on the code rate R and that the performance can only marginally be improved by increasing the block length of the code. The random coding upper bound and the lower bound are shown to converge to the capacity outage for large channel block lengths N, demonstrating that the capacity outage can be used for estimating the error probability of coded diversity schemes.

239 citations

Journal ArticleDOI
TL;DR: In this article, two different poly(L-lactides) (PLLAb and PLLAa) were blended with poly(e-caprolactone) and an elastic poly (e-CAPCLactone/L -lactide) P(CL/L-LA) copolymer to modify the mechanical properties of PLLa.
Abstract: Two different poly(L-lactides) (PLLAb and PLLAa) were blended with poly(e-caprolactone) (PCL) and an elastic poly(e-caprolactone/L-lactide) P(CL/L-LA) copolymer to modify the mechanical properties of PLLA. Blends of both PLLAs with 20 wt.-% of PCL were prepared. PLLAa was blended with 20 wt.-% of P(CL/L-LA) copolymer, and blends of PLLAb and P(CL/L-LA) copolymer were made with copolymer contents of 5, 10, 20 and 30 wt.-%. The tensile properties and impact and shear strengths were determined as a measure of the mechanical properties. The hydrolytic behavior of the blends was investigated, and the changes in shear strength as a function of hydrolysis were followed. The structure of the hydrolyzed samples was studied by means of scanning electron microscopy (SEM). The properties of PLLA changed considerably when blended with PCL or P(CL/L-LA) copolymer. An increasing amount of copolymer in PLLAb decreased tensile modulus and shear strength, but improved the strain and impact strength. In hydrolysis, blends containing PLLAa degraded slower than blends of PLLAb because of the higher initial molar mass and purity of PLLAa. The molar masses of PLLAb blends decreased dramatically, and less than 10% of the initial molar masses and shear strengths were left after 12 weeks in vitro. The morphology of the blends affected the degradation. The blends containing P(CL/L-LA) copolymer had a porous structure which facilitated water absorption into the blend.

239 citations

Journal ArticleDOI
TL;DR: Tests in line detection with synthetic and real-world images demonstrate the high speed and low memory usage of the new extensions of the RHT, as compared both to the basic RHT and other versions of the Hough transform.

238 citations

Journal ArticleDOI
TL;DR: It is suggested that the bilateral MMF components originating in the supratemporal cortex are feature specific whereas the right-hemisphere parietal component reflects more global auditory change detection.
Abstract: Infrequent "deviant' auditory stimuli embedded in a homogeneous sequence of "standard' sounds evoke a neuromagnetic mismatch field (MMF), which is assumed to reflect automatic change detection in the brain. We investigated whether MMFs would reveal hemispheric differences in cortical auditory processing. Seven healthy adults were studied with a whole-scalp neuromagnetometer. The sound sequence, delivered to one ear at time, contained three infrequent deviants (differing from standards in duration, frequency, or interstimulus interval) intermixed with standard tones. MMFs peaked 9-34 msec earlier in the right than in the left hemisphere, irrespective of the stimulated ear. Whereas deviants activated only one MMF source in the left hemisphere, two temporally overlapping but spatially separate sources, one in the temporal lobe and another in the inferior parietal cortex, were necessary to explain the right-hemisphere MMFs. We suggest that the bilateral MMF components originating in the supratemporal cortex are feature specific whereas the right-hemisphere parietal component reflects more global auditory change detection. The results imply hemispheric differences in sound processing and suggest stronger involvement of the right than the left hemisphere in change detection.

238 citations


Authors

Showing all 8962 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Hannu Kurki-Suonio13843399607
Nicolas Gisin12582764298
Anne Lähteenmäki11648581977
Riitta Hari11149143873
Andreas Richter11076948262
Mika Sillanpää96101944260
Markku Leskelä9487636881
Ullrich Scherf9273536972
Mikko Ritala9158429934
Axel H. E. Müller8956430283
Karl Henrik Johansson88108933751
T. Poutanen8612033158
Elina Lindfors8642023846
Günter Breithardt8555433165
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

95% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Normale Supérieure
99.4K papers, 3M citations

93% related

Technical University of Denmark
66.3K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2021154
2020153
2019155
201851
201714
201630