scispace - formally typeset
Search or ask a question
Institution

Kagawa University

EducationTakamatsu, Japan
About: Kagawa University is a education organization based out in Takamatsu, Japan. It is known for research contribution in the topics: Cancer & Population. The organization has 6028 authors who have published 11918 publications receiving 224111 citations. The organization is also known as: Kagawa Daigaku.
Topics: Cancer, Population, Angiotensin II, Gene, Lung cancer


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that when internal oxalate is enough to form a complex with Al at a 3:1 ratio in the leaves with a low Al concentration, Al-citrate converts to Al-oxalate, however, this conversion does not occur in the Leaves with a very highAl concentration, resulting in the coexistence of both Al- Oxalate and Al- citrate complexes.
Abstract: Buckwheat (Fagopyrum esculentum Moench. cv. Jianxi) is known as an Al-accumulating plant. The process leading to the accumulation of Al in the leaves was investigated, focusing on the chemical form of Al using 27Al-nuclear magnetic resonance. Leaves with different Al concentrations were prepared by growing buckwheat on a very acidic soil (Andosol) amended with or without CaCO3 (1 or 3 g x kg-1 soil). When the Al concentration of the leaves was lower, only one major signal was observed at a chemical shift of 16.1 ppm, which was assigned to an Al-oxalate complex at a 1:3 ratio. However, when the Al concentration of the leaves increased to a high level (e.g. 12 g Al kg-1), an additional signal at a chemical shift of 11.2 ppm was observed. This signal was assigned to an Al-citrate complex at a 1:1 ratio. In the leaf with a high Al concentration, both Al-oxalate (1:3) and Al-citrate (1:1) were detected in marginal and middle parts, while only Al-oxalate was detected in the basal part. The oxalate concentration did not differ very much between leaves with low and high Al concentrations at the same position, while citrate concentration significantly increased with increasing Al concentration when the oxalate/Al ratio became lower than 3.0. As the Al-citrate complex has been demonstrated to be the form of transport in the xylem, the results suggest that when internal oxalate is enough to form a complex with Al at a 3:1 ratio in the leaves with a low Al concentration, Al-citrate converts to Al-oxalate. However, this conversion does not occur in the leaves with a very high Al concentration, resulting in the coexistence of both Al-oxalate and Al-citrate complexes.

67 citations

Journal ArticleDOI
TL;DR: Results indicate that CSGal-1 can serve as a stable substitute for Gal-1, showing that the amino acid substitutions do not affect the overall structure or carbohydrate-binding site structure of the protein.
Abstract: Galectin-1 (Gal-1), a member of the beta-galactoside-binding animal lectin family, has a wide range of biological activities, which makes it an attractive target for medical applications. Unlike other galectins, Gal-1 is susceptible to oxidation at cysteine residues, which is troublesome for in vitro/vivo studies. To overcome this problem, we prepared a cysteine-less mutant of Gal-1 (CSGal-1) by substituting all cysteine residues with serine residues. In the case of wild-type Gal-1, the formation of covalent dimers/oligomers was evident after 10 days of storage in the absence of a reducing agent with a concomitant decrease in hemagglutination activity, while CSGal-1 did not form multimers and retained full hemagglutination activity after 400 days of storage. Frontal affinity chromatography showed that the sugar-binding specificity and affinity of Gal-1 for model glycans were barely affected by the mutagenesis. Gal-1 is known to induce cell signaling leading to an increase in the intracytoplasmic calcium concentration and to cell death. CSGal-1 is also capable of inducing calcium flux and growth inhibition in Jurkat cells, which are comparable to or more potent than those induced by Gal-1. The X-ray structure of the CSGal-1/lactose complex has been determined. The structure of CSGal-1 is almost identical to that of wild-type human Gal-1, showing that the amino acid substitutions do not affect the overall structure or carbohydrate-binding site structure of the protein. These results indicate that CSGal-1 can serve as a stable substitute for Gal-1.

67 citations

Journal ArticleDOI
TL;DR: Odor detection thresholds of optically active compounds and other volatile compounds found in the oil of yellow Keaw mangoes were determined in this article, where the odour intensity of individual components was evaluated by Lod (limited odor unit) based on data of the odor detection threshold and the concentration at the recognition threshold level of the volatile oils.
Abstract: Odor detection thresholds of optically active compounds and other volatile compounds found in the oil of yellow Keaw mangoes were determined. Odor intensity of individual components was evaluated by Lod (limited odor unit) based on data of the odor detection threshold and the concentration of individual components at the recognition threshold level of the volatile oils. � -Damascenone and terpinolene were found to have Lod values greater than one and were identified as the components most responsible for the characteristic aroma. Odor recognition threshold of a mixture of 15 chemicals having larger Lod values against natural Keaw mango oils was 1.8 ppm, which exceeded that of Keaw mango oils (0.62 ppm) against Ok-rong mango oils. The mixture of fifteen compounds comprising � -damascenone, terpinolene, ethyl hexanoate, (E,Z)-(2,6)-nonadienal, 2,5-dimethyl-4-methoxy-3(2H)-furanone, (3R)-(� )-linalool, ethyl butyrate, ethyl octanoate, ethanol, (1S)-(� )-� -3-carene, (1S,5S)-(� )-� -pinene, trans-linalool oxide, (3S)-(� )linalool, butyric acid, and p-methylacetophenone was judged to possess an aroma very similar to that of the natural Keaw mango. Thus, these fifteen compounds were the key contributors to the aroma of Keaw mango.

66 citations

Journal ArticleDOI
TL;DR: It is demonstrated that sensitivity to ACR-toxin and hence specificity of the interaction between A. alternata rough lemon pathotype and C. jambhiri is due to differential posttranscriptional processing of a mitochondrial gene.
Abstract: Specificity in the interaction between rough lemon (Citrus jambhiri Lush.) and the fungal pathogen Alternaria alternata rough lemon pathotype is determined by a host-selective toxin, ACR-toxin. Mitochondria from rough lemon are sensitive to ACR-toxin whereas mitochondria from resistant plants, including other citrus species, are resistant. We have identified a C. jambhiri mitochondrial DNA sequence, designated ACRS (ACR-toxin sensitivity gene), that confers toxin sensitivity to Escherichia coli. ACRS is located in the group II intron of the mitochondrial tRNA-Ala and is translated into a SDS-resistant oligomeric protein in C. jambhiri mitochondria but is not translated in the toxin-insensitive mitochondria. ACRS is present in the mitochondrial genome of both toxin-sensitive and -insensitive citrus. However, in mitochondria of toxin-insensitive plants, the transcripts from ACRS are shorter than those in mitochondria of sensitive plants. These results demonstrate that sensitivity to ACR-toxin and hence specificity of the interaction between A. alternata rough lemon pathotype and C. jambhiri is due to differential posttranscriptional processing of a mitochondrial gene.

66 citations


Authors

Showing all 6051 results

NameH-indexPapersCitations
Yuji Matsuzawa143836116711
Masatsugu Hori11387448028
Stewart T. Cole10951151942
Jian Feng Ma9730532310
H. Phillip Koeffler9247929428
Naoto Chatani8759726370
Takenobu Kamada8670027535
Juhn G. Liou8330121042
Hirofumi Makino8280330523
Jonathan W. Said7843725399
Junhua Li7748021626
Akira Nishiyama7561922487
Masayuki Fujita7074017847
Jun Hirabayashi6627015579
Mark R. Wormald6417914686
Network Information
Related Institutions (5)
University of Tsukuba
79.4K papers, 1.9M citations

92% related

Hiroshima University
69.2K papers, 1.4M citations

92% related

Hokkaido University
115.4K papers, 2.6M citations

91% related

Nagoya University
128.2K papers, 3.2M citations

91% related

Kyoto University
217.2K papers, 6.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202233
2021636
2020549
2019533
2018507