scispace - formally typeset
Search or ask a question
Institution

Kagawa University

EducationTakamatsu, Japan
About: Kagawa University is a education organization based out in Takamatsu, Japan. It is known for research contribution in the topics: Cancer & Population. The organization has 6028 authors who have published 11918 publications receiving 224111 citations. The organization is also known as: Kagawa Daigaku.
Topics: Cancer, Population, Angiotensin II, Gene, Lung cancer


Papers
More filters
Journal ArticleDOI
TL;DR: In a new interactive fuzzy satisficing method for multiobjective linear programming problems with fuzzy parameters, the satisficing solution of the decision maker is derived efficiently from among M-α-Pareto optimal solutions.

85 citations

Journal ArticleDOI
TL;DR: The results indicate that pFN regulated chemotaxis of osteogenic cells and coating the implant with pFN enhanced earlier osseointegration.

85 citations

Journal ArticleDOI
TL;DR: The findings suggest that caspase-dependent and-independent death pathways exist in Jurkat cells, and the main pathway might vary with the T-cell type.
Abstract: Galectin-9, a mammalian lectin with affinity for β-galactosides, is known as an apoptosis inducer of activated T lymphocytes. In the present study, we examined the properties of galectin-9-mediated cell death of Jurkat T cells. Galectin-9NC (wild-type), consisting of two CRDs (N-terminal and C-terminal carbohydrate recognition domains), and derivatives of it, galectins-9-NN and -9-CC, induced Jurkat T-cell apoptosis. However, a single CRD (galectin-9NT or -CT) had no effect, suggesting the stable dimeric structure of two CRDs is required for the activity. The apoptosis was inhibited by pretreatment with an N-glycan synthesis inhibitor, indicating that the expression of N-glycans in the cells is essential for galectin-9-induced apoptosis. We previously showed that the apoptosis of MOLT-4 cell is mediated by galectin-9 via a Ca 2+ -calpain-caspase-1-dependent pathway. In Jurkat cells, the cell death by galectin-9, was insufficiently suppressed by caspase inhibitors, Ca 2+ -chelator or calpain inhibitor. Furthermore, we observed the loss of mitochondrial membrane potential and significant AIF release in galectin-9-treated cells. These findings suggest that caspase-dependent and-independent death pathways exist in Jurkat cells, and the main pathway might vary with the T-cell type.

84 citations

Journal ArticleDOI
TL;DR: The first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor is reported, similar to that of fungal glucose oxidases (GOxs) reported till date.
Abstract: We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 A and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 A. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management.

84 citations

Journal ArticleDOI
TL;DR: Planting sweet potato is a promising technique for reducing infestations of mile-a-minute, providing weed management benefits and economic returns from harvest of sweet potatoes, and the potential value of replacement control methods which may apply to other crop-weed systems or invaded natural ecosystems are shown.
Abstract: There are a variety of ways of increasing crop diversity to increase agricultural sustainability and in turn having a positive influence on nearby natural ecosystems. Competitive crops may provide potent management tools against invasive plants. To elucidate the competitive mechanisms between a sweet potato crop (Ipomoea batatas) and an invasive plant, mile-a-minute (Mikania micrantha), field experiments were carried out in Longchuan County of Yunnan Province, Southwest China, utilizing a de Wit replacement series. The trial incorporated seven ratios of sweet potato and mile-a-minute plants in 25 m2 plots. In monoculture, the total biomass, biomass of adventitious root, leafstalk length, and leaf area of sweet potato were all higher than those of mile-a-minute, and in mixed culture the plant height, branch, leaf, stem node, adventitious root, flowering and biomass of mile-a-minute were suppressed significantly (P < 0.05). The relative yield (RY) of mile-a-minute and sweet potato was less than 1.0 in mixed culture, indicating that intraspecific competition was less than interspecific competition. The competitive balance index of sweet potato demonstrated a higher competitive ability than mile-a-minute. Except pH, other soil nutrient contents of initial soil (CK) were significantly higher than those of seven treatments. The concentrations of soil organic matter, total N, total K, available N, available P, available K, exchange Ca, exchange Mg, available Mn, and available B were significantly greater (P < 0.05) in mile-a-minute monoculture soil than in sweet potato monoculture soil, and were reduced by the competition of sweet potato in the mixture. Evidently sweet potato has a competitive advantage in terms of plant growth characteristics and greater absorption of soil nutrients. Thus, planting sweet potato is a promising technique for reducing infestations of mile-a-minute, providing weed management benefits and economic returns from harvest of sweet potatoes. This study also shows the potential value of replacement control methods which may apply to other crop-weed systems or invaded natural ecosystems.

84 citations


Authors

Showing all 6051 results

NameH-indexPapersCitations
Yuji Matsuzawa143836116711
Masatsugu Hori11387448028
Stewart T. Cole10951151942
Jian Feng Ma9730532310
H. Phillip Koeffler9247929428
Naoto Chatani8759726370
Takenobu Kamada8670027535
Juhn G. Liou8330121042
Hirofumi Makino8280330523
Jonathan W. Said7843725399
Junhua Li7748021626
Akira Nishiyama7561922487
Masayuki Fujita7074017847
Jun Hirabayashi6627015579
Mark R. Wormald6417914686
Network Information
Related Institutions (5)
University of Tsukuba
79.4K papers, 1.9M citations

92% related

Hiroshima University
69.2K papers, 1.4M citations

92% related

Hokkaido University
115.4K papers, 2.6M citations

91% related

Nagoya University
128.2K papers, 3.2M citations

91% related

Kyoto University
217.2K papers, 6.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202233
2021636
2020549
2019533
2018507