scispace - formally typeset
Search or ask a question
Institution

National Ocean Service

GovernmentSilver Spring, Maryland, United States
About: National Ocean Service is a government organization based out in Silver Spring, Maryland, United States. It is known for research contribution in the topics: Algal bloom & Population. The organization has 500 authors who have published 643 publications receiving 46096 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An integrative methodology for site selection of shellfish aquaculture that combines geographical information systems and dynamic farm-scale carrying capacity modeling was developed and tested, emphasizing the application in data-poor environments.

133 citations

Journal ArticleDOI
TL;DR: An approximately 20 m depth or depth interval limit is identified to the use of bubble nets and it is suggested that this limit is due to the physics of bubble dispersal to which humpback whales have behaviourally adapted.
Abstract: Summary Humpback whales (Megaptera novaeangliae) employ a unique and complex foraging behaviour — bubble-netting — that involves expelling air underwater to form a vertical cylinder-ring of bubbles around prey. We used digital suction cup tags (DTAGs) that concurrently measure pitch, roll, heading, depth and sound (96 kHz sampling rate), to provide the first depiction of the underwater behaviours in which humpback whales engage during bubble-net feeding. Body mechanics and swim paths were analysed using custom visualization software that animates the underwater track of the whale and quantifies tag sensor values. Bubble production was identified aurally and through spectrographic analysis of tag audio records. We identified two classes of behaviour (upward-spiral; 6 animals, 118 events and double-loop; 3 animals, 182 events) that whales used to create bubble nets. Specifically, we show the actual swim path of the whales (e.g., number of revolutions, turning rate, depth interval of spiral), when and where in the process bubbles were expelled and the pattern of bubble expulsion used by the animals. Relative to other baleanopterids, bubble-netting humpbacks demonstrate increased manoeuvrability probably aided by a unique hydrodynamicly enhanced body form. We identified an approximately 20 m depth or depth interval limit to the use of bubble nets and suggest that this limit is due to the physics of bubble dispersal to which humpback whales have behaviourally adapted. All animals were feeding with at

127 citations

Journal ArticleDOI
TL;DR: The SeaWiFS (Sea Wide Field-of-view Sensor) as mentioned in this paper provides coverage every 1 to 2 days with 1-km pixel view at nadir, providing good and reproducible estimates of chlorophyll, providing the means of monitoring various algal blooms.
Abstract: The new satellite ocean color sensors offer a means of detecting and monitoring algal blooms in the ocean and coastal zone. Beginning with SeaWiFS (Sea Wide Field-of-view Sensor) in September 1997, these sensors provide coverage every 1 to 2 days with 1-km pixel view at nadir. Atmospheric correction algorithms designed for the coastal zone combined with regional chlorophyll algorithms can provide good and reproducible estimates of chlorophyll, providing the means of monitoring various algal blooms. Harmful algal blooms (HABs) caused by Karenia brevis in the Gulf of Mexico are particularly amenable to remote observation. The Gulf of Mexico has relatively clear water and K. brevis, in bloom conditions, tends to produce a major portion of the phytoplankton biomass. A monitoring program has begun in the Gulf of Mexico that integrates field data from state monitoring programs with satellite imagery, providing an improved capability for the monitoring of K. brevis blooms.

126 citations

Journal ArticleDOI
TL;DR: In this paper, a three-dimensional hydrodynamic circulation model with descriptive and experimental biological data concerning oyster population dynamics in the Apalachicola Estuary (Florida, U.S.A.).
Abstract: This paper describes the linkage of a three-dimensional hydrodynamic circulation model with descriptive and experimental biological data concerning oyster ( Crassostrea virginica ) population dynamics in the Apalachicola Estuary (Florida, U.S.A.). Our intent was to determine the direct and indirect role of Apalachicola River flow in the maintenance of oyster production. Results of a monthly field sampling programme conducted on the oyster reefs in the Apalachicola system during 1985–1986 were used to develop statistical models relating several life-history characteristics of oysters to physical-chemical aspects of water quality. The same life-history characteristics were related statistically to output from a circulation model of Apalachicola Bay. Highest oyster densities and overall bar growth were found in the vicinity of the confluence of high salinity water moving westwards from St George Sound and river-dominated (low salinity) water moving south and eastwards from East Bay. With the exception of models for oyster mortality, the predictive capability of results from the parallel modelling efforts was low. A time-averaged model was developed for oyster mortality during the summer of 1985 by running a regression analysis with averaged predictors derived from the hydrodynamic model and observed (experimental) mortality rates throughout the estuary. A geographic information system was then used to depict the results spatially and to compare the extent of expected mortality in 1985 and 1986. High salinity, relatively low-velocity current patterns, and the proximity of a given oyster bar to entry points of saline Gulf water into the bay were important factors that contribute to increased oyster mortality. Mortality was a major determinant of oyster production in the Apalachicola Estuary with predation as a significant aspect of such mortality. By influencing salinity levels and current patterns throughout the bay, the Apalachicola River was important in controlling such mortality. Oyster production rates in the Apalachicola system depend on a combination of variables that are directly and indirectly associated with freshwater input as modified by wind, tidal factors, and the physiography of the bay. River flow reduction, whether through naturally occurring droughts, through increased upstream anthropogenous (consumptive) water use, or a combination of the two, could have serious adverse consequences for oyster populations. By coupling hydrodynamic modelling with descriptive and experimental biological data, we were able to determine the effects of potential freshwater diversions on oyster production in Apalachicola Bay.

126 citations

Journal ArticleDOI
TL;DR: These PCR assays had a minimum sensitivity of 100 cells in a 100‐mL sample and were successfully used to detect PLOs in the St. Johns River system in Florida, USA.
Abstract: The putative harmful algal bloom dinoflagellate, Pfiesteria piscicida (Steidinger et Burkholder), frequently co-occurs with other morphologically similar species collectively known as Pfiesteria -like organisms (PLOs). This study specifically evaluated whether unique sequences in the internal transcribed spacer (ITS) regions, ITS1 and ITS2, could be used to develop PCR assays capable of detecting PLOs in natural assemblages. ITS regions were selected because they are more variable than the flanking small subunit or large subunit rRNA genes and more likely to contain species-specific sequences. Sequencing of the ITS regions revealed unique oligonucleotide primer binding sites for Pfiesteria piscicida , Pfiesteria shumwayae (Glasgow et Burkholder), Florida “Lucy” species, two cryptoperidiniopsoid species, “H/V14” and “PLO21,” and the estuarine mixotroph, Karlodinium micrum (Leadbetter et Dodge). These PCR assays had a minimum sensitivity of 100 cells in a 100-mL sample (1 cell·mL � 1 ) and were successfully used to detect PLOs in the St. Johns River system in Florida, USA. DNA purification and aspects of PCR assay development, PCR optimization, PCR assay controls, and collection of field samples are discussed.

125 citations


Authors

Showing all 501 results

Network Information
Related Institutions (5)
IFREMER
12.3K papers, 468.8K citations

88% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

86% related

Environment Canada
8.3K papers, 410.9K citations

84% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

84% related

National Marine Fisheries Service
7K papers, 305K citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20222
202129
202017
201917
201831
201719