scispace - formally typeset
Search or ask a question
Institution

South China University of Technology

EducationGuangzhou, China
About: South China University of Technology is a education organization based out in Guangzhou, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 62343 authors who have published 69468 publications receiving 1251592 citations. The organization is also known as: SCUT & Huánán Lǐgōng Dàxué.


Papers
More filters
Journal ArticleDOI
H. Wang1, Huaijun Lin1, Weitong Cai1, L.Z. Ouyang1, M. Zhu1 
TL;DR: In this article, a simple and massive fabrication method was developed to in-situ form multi-valence nano-catalyst in Mg-based hydrides by conventional melting and hydrogenation treatment.

222 citations

Journal ArticleDOI
TL;DR: In this paper, a green activation method for the preparation of nitrogen-rich porous carbons (NPCs) was developed, that is, one-step calcium chloride (CaCl2) activation sugar cane bagasse with urea.
Abstract: It has long been demonstrated that KOH and ZnCl2 can be used as efficient chemical activation agents to prepare porous carbons. Herein, we develop a green activation method, that is, one-step calcium chloride (CaCl2) activation sugar cane bagasse with urea, for the preparation of nitrogen-rich porous carbons (NPCs). The nitrogen contents, specific surface areas, pore sizes, and specific capacitances of the obtained NPCs can be effectively tuned by adjusting the ratio of carbon precursor (sugar cane bagasse), nitrogen source (urea), and activation agent (CaCl2). The synthesized three-dimensional oriented and interlinked porous nitrogen-rich carbons (3D-NPCs) contain not only abundant porosities which can impose an advantage for ion buffering and accommodation, but also high nitrogen content in the carbons which can obviously increase the pseudocapacitance. Therefore, for the typical sample, obtained from pyrolysis of the mixture of sugar cane bagasse, urea, and CaCl2 in a mass ratio of 1:2:2 at 800 °C for ...

222 citations

Journal ArticleDOI
01 Jan 2019
TL;DR: A facile one-pot sol-gel approach was developed to construct superhydrophobic and flame-retardant (SFR) coatings on cotton fabrics, demonstrating significant advantages in practical production.
Abstract: Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing and tents. Herein, a facile one-pot sol-gel approach was developed to construct superhydrophobic and flame-retardant (SFR) coatings on cotton fabrics. The cotton fabric was activated by O2 plasma and then immersed into the ethanol suspension containing tetraethoxysilane (TEOS), hydroxyl-terminated polydimethylsiloxane (HPDMS) and ammonium polyphosphate (APP). The hydrogen bonding interaction between APP and cellulose motivated the APP to attach to the cotton fibers during the initial stirring process. After the addition of ammonia, the in situ sol-gel reaction of TEOS and HPDMS was initiated to generate polydimethylsiloxane-silica hybrid (PDMS-silica). The micro-nano structured composite coating on cotton fabric was successfully fabricated by the PDMS-silica and APP. The SFR cotton fabric showed outstanding durability and self-cleaning ability with a water contact angle (WCA) above 160°. When exposed to fire, the SFR cotton fabric quickly charred to extinguish the fire by generating a dense intumescent char layer under the physical barrier effect of PDMS-silica and the intumescent flame-retardant effect of APP. This one-pot approach for fabricating SFR cotton fabric is simple, cost-effective and timesaving, demonstrating significant advantages in practical production.

222 citations

Journal ArticleDOI
TL;DR: A series of novel composite membranes, based on sulfonated poly(ether ether ketone) (SPEEK) with various graphene oxide (GO) loadings, were employed and investigated in vanadium redox flow battery (VRFB) for the first time as discussed by the authors.
Abstract: A series of novel composite membranes, based on sulfonated poly(ether ether ketone) (SPEEK) with various graphene oxide (GO) loadings, were employed and investigated in vanadium redox flow battery (VRFB) for the first time. The scanning electron microscopy images of the composite membranes revealed the uniform dispersion of GO nanosheets in the polymer matrix due to the interaction between GO and SPEEK, as confirmed by Fourier transform infrared spectra. The mechanical and thermal parameters of the composite membranes increased, while the VO2+ permeability decreased with increasing GO content. Random embedding of GO nanosheets in the membranes can serve as effective barriers to block the transport of vanadium ion, resulting in a significant decrease of vanadium ion permeability. The VRFB assembled with the composite membrane exhibited highly improved cell parameters and strikingly long cycling stability compared with commercial Nafion 117 membrane. With the protection of porous PTFE substrate, the pore-filling SPEEK/GO composite membrane based on VRFB ran for 1200 cycles with relatively low capacity decline.

222 citations

Journal ArticleDOI
TL;DR: A new strategy to prepare a reduced graphene oxide (rGO)-based lamellar carbon aerogel with unexpected and integrated performances by designing wave-shape rGO layers and enhancing the interaction among the r GO layers is demonstrated.
Abstract: Ultralight and compressible carbon materials have promising applications in strain and pressure detection. However, it is still difficult to prepare carbon materials with supercompressibility, elasticity, stable strain-electrical signal response, and ultrasensitive detection limits, due to the challenge in structural regulation. Herein, a new strategy to prepare a reduced graphene oxide (rGO)-based lamellar carbon aerogels with unexpected and integrated performances by designing wave-shape rGO layers and enhancing the interaction among the rGO layers is demonstrated. Addition of cellulose nanocrystalline and low-molecular-weight carbon precursors enhances the interaction among rGO layers and thus produces an ultralight, flexible, and superstable structure. The as-prepared carbon aerogel displays a supercompressibility (undergoing an extreme strain of 99%) and elasticity (100% height retention after 10 000 cycles at a strain of 30%), as well as stable strain-current response (at least 10 000 cycles). Particularly, the carbon aerogel is ultrasensitive for detecting tiny change in strain (0.012%) and pressure (0.25 Pa), which are the lowest detection limits for compressible carbon materials reported in the literature. Moreover, the carbon aerogel exhibits excellent bendable performance and can detect an ultralow bending angle of 0.052°. Additionally, the carbon aerogel also demonstrates its promising application as wearable devices.

222 citations


Authors

Showing all 62809 results

NameH-indexPapersCitations
H. S. Chen1792401178529
David A. Weitz1781038114182
Gang Chen1673372149819
Jun Wang1661093141621
Yang Yang1642704144071
Hua Zhang1631503116769
Ben Zhong Tang1492007116294
Jun Liu13861677099
Han Zhang13097058863
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Alex K.-Y. Jen12892161811
Zhen Li127171271351
Jianlin Shi12785954862
Network Information
Related Institutions (5)
Tianjin University
79.9K papers, 1.2M citations

96% related

Dalian University of Technology
71.9K papers, 1.1M citations

96% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023215
20221,169
20217,649
20207,132
20196,686
20185,736