scispace - formally typeset
Search or ask a question
Institution

South China University of Technology

EducationGuangzhou, China
About: South China University of Technology is a education organization based out in Guangzhou, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 62343 authors who have published 69468 publications receiving 1251592 citations. The organization is also known as: SCUT & Huánán Lǐgōng Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a series of paraffin/expanded graphite (EG) composites have been applied to a simulative battery thermal management system and to find out the PCM with the best thermal properties.

209 citations

Journal ArticleDOI
TL;DR: In this article, a novel synthesis strategy is developed to encapsulate palladium precursors through ligand design prior to MOF assembly, achieving uniformly distributed palladium NPs inside the cavities of MOFs.
Abstract: A novel synthesis strategy is developed to encapsulate palladium precursors through ligand design prior to MOF assembly, achieving uniformly distributed palladium NPs inside the cavities of MOFs. This strategy can avoid the different diffusion resistance between external and internal surfaces, and thus allow metal precursors to be easily deposited into the pores and evenly distributed within MOF networks. The embedded Pd NPs exhibited excellent shape-selectivity in olefin hydrogenation, as well as high catalytic efficiencies in aerobic oxidation of alcohols and reduction of nitrobenzene, showing significantly enhanced catalytic activity and stability as compared to those synthesized using a traditional impregnation method. The superior catalytic activity and stability came from the synergetic effects of nano-confinement and electron-donation offered by the MOF framework.

209 citations

Journal ArticleDOI
TL;DR: A solution-processed zinc oxide (ZnO) thin film as a buffer layer for polymer solar cells (PSCs) with an inverted device structure has been demonstrated in this article.
Abstract: A solution-processed zinc oxide (ZnO) thin film as a buffer layer for polymer solar cells (PSCs) with an inverted device structure has been demonstrated. A power conversion efficiency (PCE) of 3.8% was observed from an inverted device structure with the ZnO buffer layer. Without the ZnO layer, PSCs only show a PCE of 1.67%, which is less than half the value observed from PSCs with the ZnO buffer layer. When operated at room temperature, no obvious degradation was observed from the PSCs with the ZnO layer after continuously illuminating the devices for 4 h. However, a significant degradation was observed from the PSCs without the ZnO buffer layer after illuminating the devices only for 1 h. Furthermore, PSCs with the ZnO buffer layer also show very good shelf stability; only 5% degradation was observed in PCEs after 47 days. All these results demonstrate that the ZnO buffer layer plays an important role in the enhancement of PSCs’ performance with an inverted device structure.

209 citations

Journal ArticleDOI
TL;DR: To improve regional air quality and avoid exacerbating the acidity of aerosols, a more effective pathway is to adopt a multipollutant strategy to control NH(3) emissions in parallel with current SO(2) and NO(x) controls in China.
Abstract: Ammonia (NH(3)) is one important precursor of inorganic fine particles; however, knowledge of the impacts of NH(3) emissions on aerosol formation in China is very limited. In this study, we have developed China's NH(3) emission inventory for 2005 and applied the Response Surface Modeling (RSM) technique upon a widely used regional air quality model, the Community Multi-Scale Air Quality Model (CMAQ). The purpose was to analyze the impacts of NH(3) emissions on fine particles for January, April, July, and October over east China, especially those most developed regions including the North China Plain (NCP), Yangtze River delta (YRD), and the Pearl River delta (PRD). The results indicate that NH(3) emissions contribute to 8-11% of PM(2.5) concentrations in these three regions, comparable with the contributions of SO(2) (9-11%) and NO(x) (5-11%) emissions. However, NH(3), SO(2), and NO(x) emissions present significant nonlinear impacts; the PM(2.5) responses to their emissions increase when more control efforts are taken mainly because of the transition between NH(3)-rich and NH(3)-poor conditions. Nitrate aerosol (NO(3)(-)) concentration is more sensitive to NO(x) emissions in NCP and YRD because of the abundant NH(3) emissions in the two regions, but it is equally or even more sensitive to NH(3) emissions in the PRD. In high NO(3)(-) pollution areas such as NCP and YRD, NH(3) is sufficiently abundant to neutralize extra nitric acid produced by an additional 25% of NO(x) emissions. The 90% increase of NH(3) emissions during 1990-2005 resulted in about 50-60% increases of NO(3)(-) and SO(4)(2-) aerosol concentrations. If no control measures are taken for NH(3) emissions, NO(3)(-) will be further enhanced in the future. Control of NH(3) emissions in winter, spring, and fall will benefit PM(2.5) reduction for most regions. However, to improve regional air quality and avoid exacerbating the acidity of aerosols, a more effective pathway is to adopt a multipollutant strategy to control NH(3) emissions in parallel with current SO(2) and NO(x) controls in China.

209 citations

Journal ArticleDOI
TL;DR: In this article, a facile two-step synthesis procedure is reported for luminescent and color-tunable CsPbX3-zeolite-Y composite phosphors, where perovskite QDs are encapsulated in the porous zeolite matrix.
Abstract: Recently developed CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (QDs) hold great potential for various applications owing to their superior optical properties, such as tunable emissions, high quantum efficiency, and narrow linewidths. However, poor stability under ambient conditions and spontaneous ion exchange among QDs hinder their application, for example, as phosphors in white-light-emitting diodes (WLEDs). Here, a facile two-step synthesis procedure is reported for luminescent and color-tunable CsPbX3–zeolite-Y composite phosphors, where perovskite QDs are encapsulated in the porous zeolite matrix. First zeolite-Y is infused with Cs+ ions by ion exchange from an aqueous solution and then forms CsPbX3 QDs by diffusion and reaction with an organic solution of PbX2. The zeolite encapsulation reduces degradation and improves the stability of the QDs under strong illumination. A WLED is fabricated using the resulting microscale composites, with Commission Internationale de I'Eclairage (CIE) color coordinates (0.38, 0.37) and achieving 114% of National Television Standards Committee (NTSC) and 85% of the ITU-R Recommendation BT.2020 (Rec.2020) coverage.

208 citations


Authors

Showing all 62809 results

NameH-indexPapersCitations
H. S. Chen1792401178529
David A. Weitz1781038114182
Gang Chen1673372149819
Jun Wang1661093141621
Yang Yang1642704144071
Hua Zhang1631503116769
Ben Zhong Tang1492007116294
Jun Liu13861677099
Han Zhang13097058863
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Alex K.-Y. Jen12892161811
Zhen Li127171271351
Jianlin Shi12785954862
Network Information
Related Institutions (5)
Tianjin University
79.9K papers, 1.2M citations

96% related

Dalian University of Technology
71.9K papers, 1.1M citations

96% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023215
20221,169
20217,649
20207,132
20196,686
20185,736