scispace - formally typeset
Search or ask a question
Institution

South China University of Technology

EducationGuangzhou, China
About: South China University of Technology is a education organization based out in Guangzhou, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 62343 authors who have published 69468 publications receiving 1251592 citations. The organization is also known as: SCUT & Huánán Lǐgōng Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Ni3S2@Ni(OH)2/3DGN was synthesized using a one-step hydrothermal reaction, and the morphological and structural evolution of the 3DGN has been investigated.
Abstract: A three-dimensional graphene network (3DGN) grown on nickel foam is an excellent template for the synthesis of graphene-based composite electrodes for use in supercapacitors. Ni(OH)2nanosheets coated onto single-crystal Ni3S2nanorods grown on the surface of the 3DGN (referred to as the Ni3S2@Ni(OH)2/3DGN) are synthesized using a one-step hydrothermal reaction. SEM, TEM, XRD and Raman spectroscopy are used to investigate the morphological and structural evolution of the Ni3S2@Ni(OH)2/3DGN. Detailed electrochemical characterization shows that the Ni3S2@Ni(OH)2/3DGN exhibits high specific capacitance (1277 F g−1 at 2 mV s−1 and 1037.5 F g−1 at 5.1 A g−1) and areal capacitance (4.7 F cm−2 at 2 mV s−1 and 3.85 F cm−2 at 19.1 mA cm−2) with good cycling performance (99.1% capacitance retention after 2000 cycles).

532 citations

Journal ArticleDOI
TL;DR: In this article, a mathematical model for the optimal sizing of EV charging stations is developed with the minimization of total cost associated with EVs charging stations to be planned as the objective function and solved by a modified primal-dual interior point algorithm (MPDIPA).
Abstract: With the progressive exhaustion of fossil energy and the enhanced awareness of environmental protection, more attention is being paid to electric vehicles (EVs). Inappropriate siting and sizing of EV charging stations could have negative effects on the development of EVs, the layout of the city traffic network, and the convenience of EVs' drivers, and lead to an increase in network losses and a degradation in voltage profiles at some nodes. Given this background, the optimal sites of EV charging stations are first identified by a two-step screening method with environmental factors and service radius of EV charging stations considered. Then, a mathematical model for the optimal sizing of EV charging stations is developed with the minimization of total cost associated with EV charging stations to be planned as the objective function and solved by a modified primal-dual interior point algorithm (MPDIPA). Finally, simulation results of the IEEE 123-node test feeder have demonstrated that the developed model and method cannot only attain the reasonable planning scheme of EV charging stations, but also reduce the network loss and improve the voltage profile.

531 citations

Journal ArticleDOI
TL;DR: Combination of the radiomics signature, traditional staging system, and other clinical-pathologic risk factors performed better for individualized DFS estimation in patients with early-stage NSCLC, which might enable a step forward precise medicine.
Abstract: Purpose To develop a radiomics signature to estimate disease-free survival (DFS) in patients with early-stage (stage I-II) non-small cell lung cancer (NSCLC) and assess its incremental value to the traditional staging system and clinical-pathologic risk factors for individual DFS estimation. Materials and Methods Ethical approval by the institutional review board was obtained for this retrospective analysis, and the need to obtain informed consent was waived. This study consisted of 282 consecutive patients with stage IA-IIB NSCLC. A radiomics signature was generated by using the least absolute shrinkage and selection operator, or LASSO, Cox regression model. Association between the radiomics signature and DFS was explored. Further validation of the radiomics signature as an independent biomarker was performed by using multivariate Cox regression. A radiomics nomogram with the radiomics signature incorporated was constructed to demonstrate the incremental value of the radiomics signature to the traditional staging system and other clinical-pathologic risk factors for individualized DFS estimation, which was then assessed with respect to calibration, discrimination, reclassification, and clinical usefulness. Results The radiomics signature was significantly associated with DFS, independent of clinical-pathologic risk factors. Incorporating the radiomics signature into the radiomics-based nomogram resulted in better performance (P < .0001) for the estimation of DFS (C-index: 0.72; 95% confidence interval [CI]: 0.71, 0.73) than with the clinical-pathologic nomogram (C-index: 0.691; 95% CI: 0.68, 0.70), as well as a better calibration and improved accuracy of the classification of survival outcomes (net reclassification improvement: 0.182; 95% CI: 0.02, 0.31; P = .02). Decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics nomogram outperformed the traditional staging system and the clinical-pathologic nomogram. Conclusion The radiomics signature is an independent biomarker for the estimation of DFS in patients with early-stage NSCLC. Combination of the radiomics signature, traditional staging system, and other clinical-pathologic risk factors performed better for individualized DFS estimation in patients with early-stage NSCLC, which might enable a step forward precise medicine. © RSNA, 2016 Online supplemental material is available for this article.

531 citations

Journal ArticleDOI
16 Jan 2019-Joule
TL;DR: In this article, the surface properties of 2D catalysts for efficient NH3 fixation under ambient conditions were optimized by tuning active sites and retarding hydrogen evolution activity, which achieved an ultralow potential for NH3 electrosynthesis from N2 and H2O.

522 citations

Journal ArticleDOI
TL;DR: High Performance Fe- and N-Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction as mentioned in this paper, which is a high performance Fe-and N-doped carbon catalyst with graphene structure.
Abstract: High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction

522 citations


Authors

Showing all 62809 results

NameH-indexPapersCitations
H. S. Chen1792401178529
David A. Weitz1781038114182
Gang Chen1673372149819
Jun Wang1661093141621
Yang Yang1642704144071
Hua Zhang1631503116769
Ben Zhong Tang1492007116294
Jun Liu13861677099
Han Zhang13097058863
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Alex K.-Y. Jen12892161811
Zhen Li127171271351
Jianlin Shi12785954862
Network Information
Related Institutions (5)
Tianjin University
79.9K papers, 1.2M citations

96% related

Dalian University of Technology
71.9K papers, 1.1M citations

96% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023215
20221,169
20217,649
20207,132
20196,686
20185,736