scispace - formally typeset
Search or ask a question
Institution

Tallinn University of Technology

EducationTallinn, Estonia
About: Tallinn University of Technology is a education organization based out in Tallinn, Estonia. It is known for research contribution in the topics: European union & Computer science. The organization has 3688 authors who have published 10313 publications receiving 145058 citations. The organization is also known as: Tallinn Technical University & Tallinna Tehnikaülikool.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, distribution and emission losses of low temperature and conventional radiator heating system were determined in North and Central Europe climates for low energy detached houses and apartment buildings, and the authors proposed a new set of tabulated values for the revision of the standard.

62 citations

Posted Content
TL;DR: A set of community-wide recommendations aiming to help establish standards of supervised machine learning validation in biology are presented, including a structured methods description for machine learning based on data, optimization, model, evaluation (DOME).
Abstract: Modern biology frequently relies on machine learning to provide predictions and improve decision processes. There have been recent calls for more scrutiny on machine learning performance and possible limitations. Here we present a set of community-wide recommendations aiming to help establish standards of supervised machine learning validation in biology. Adopting a structured methods description for machine learning based on data, optimization, model, evaluation (DOME) will aim to help both reviewers and readers to better understand and assess the performance and limitations of a method or outcome. The recommendations are formulated as questions to anyone wishing to pursue implementation of a machine learning algorithm. Answers to these questions can be easily included in the supplementary material of published papers.

62 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the pilot-scale removal of a wide range of pharmaceuticals from real wastewaters via gas-phase pulsed corona discharge oxidation, which was studied for raw sewage from a public hospital and for biologically treated wastewater of a health-care institute.
Abstract: In recent years, accumulation of pharmaceutical compounds in the environment has been an issue of growing concern. Conventional wastewater treatment has limited effectiveness with many pharmaceuticals at concentrations of ppb or ppt scale. An intuitive solution would be to treat the pharmaceuticals-contaminated wastewaters at the source sites before dilution in sewer networks. Health institutions with concentrated drug consumption provide logical point sources for pharmaceuticals entering the sewage. This paper describes the pilot-scale removal of a wide range of pharmaceuticals from real wastewaters via gas-phase pulsed corona discharge oxidation. The process was studied for raw sewage from a public hospital and for biologically treated wastewater of a health-care institute. The non-selective oxidation of the observed pharmaceuticals (32 compounds) was effective at reasonable energy cost: 87-% reduction in residual pharmaceuticals (excluding biodegradable caffeine) from raw sewage was attained with 1 kWh m−3 from the raw sewage and 100% removal was achieved for biologically treated wastewater at only 0.5 kWh m−3. The impact for affected aquatic environments upon the present solution would be a dramatically reduced load of pharmaceutical accumulation.

61 citations

Journal ArticleDOI
TL;DR: In this article, activated carbon (AC) was derived from seed shells of Jatropha curcas and applied to decontaminate the zearalenone (ZEA) mycotoxin.
Abstract: In the present study, activated carbon (AC) was derived from seed shells of Jatropha curcas and applied to decontaminate the zearalenone (ZEA) mycotoxin. The AC of J. curcas (ACJC) was prepared by ZnCl2 chemical activation method and its crystalline structure was determined by X-ray diffraction analysis. The crystalline graphitic nature of ACJC was confirmed from the Raman spectroscopy. Scanning electron microscope showed the porous surface morphology of the ACJC surface with high pore density and presence of elemental carbon was identified from the energy dispersive X-ray analysis. From Brunauer-Emmett-Teller (BET) analysis, SBET, micropore area, and average pore diameter of ACJC were calculated as 822.78 (m2/g), 255.36 (m2/g), and 8.5980 (A), respectively. The adsorption of ZEA by ACJC was accomplished with varying contact time, concentration of ZEA and ACJC, and pH of media. The ACJC has adsorbed the ZEA over a short period of time and adsorption of ZEA was dependent on the dose of ACJC. The effect of different pH on adsorption of ZEA by ACJC was not much effective. Desorption studies confirmed that adsorption of ZEA by ACJC was stable. The adsorption isotherm of ZEA by ACJC was well fitted with Langmuir model rather than Freundlich and concluded the homogeneous process of sorption. The maximum adsorption of ZEA by ACJC was detected as 23.14 μg/mg. Finally, adsorption property of ACJC was utilized to establish ACJC as an antidote against ZEA-induced toxicity under in vitro in neuro-2a cells. The percentage of live cells was high in cells treated together with a combination of ZEA and ACJC compared to ZEA treated cells. In a similar way, ΔΨM was not dropped in cells exposed to combination of ACJC and ZEA compared to ZEA treated cells. Furthermore, cells treated with a combination of ZEA and ACJC exhibited lower level of intracellular reactive oxygen species and caspase-3 compared to ZEA treated cells. These in vitro studies concluded that ACJC has successfully protected the cells from ZEA-induced toxicity by lowering the availability of ZEA in media as a result of adsorption of ZEA. The study concluded that ACJC was a potent decontaminating agent for ZEA and could be used as an antidote against ZEA-induced toxicity.

61 citations

Journal ArticleDOI
TL;DR: This paper explores the use of Adaptor Grammars, a nonparametric Bayesian modelling framework, for minimally supervised morphological segmentation, and shows that semi-supervised training provides a boost over unsupervisedTraining, while the model selection method yields the best average results over all languages and is competitive with state-of-the-art semi- supervised systems.
Abstract: This paper explores the use of Adaptor Grammars, a nonparametric Bayesian modelling framework, for minimally supervised morphological segmentation. We compare three training methods: unsupervised training, semi-supervised training, and a novel model selection method. In the model selection method, we train unsupervised Adaptor Grammars using an over-articulated metagrammar , then use a small labelled data set to select which potential morph boundaries identified by the meta-grammar should be returned in the final output. We evaluate on five languages and show that semi-supervised training provides a boost over unsupervised training, while the model selection method yields the best average results over all languages and is competitive with state-of-the-art semi-supervised systems. Moreover, this method provides the potential to tune performance according to different evaluation metrics or downstream tasks.

61 citations


Authors

Showing all 3757 results

NameH-indexPapersCitations
James Chapman8248336468
Alexandre Alexakis6754017247
Bernard Waeber5637035335
Peter A. Andrekson5457312042
Charles S. Peirce5116711998
Lars M. Blank493018011
Fushuan Wen494659189
Mati Karelson4820710210
Ago Samoson461198807
Zebo Peng453597312
Petru Eles443006749
Vijai Kumar Gupta433016901
Eero Vasar432636930
Rik Ossenkoppele421926839
Tõnis Timmusk4110511056
Network Information
Related Institutions (5)
Norwegian University of Science and Technology
68.9K papers, 1.9M citations

88% related

Royal Institute of Technology
68.4K papers, 1.9M citations

86% related

Delft University of Technology
94.4K papers, 2.7M citations

86% related

Polytechnic University of Milan
58.4K papers, 1.2M citations

86% related

University of Ljubljana
47K papers, 1M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202342
2022107
2021883
2020951
2019882
2018745