scispace - formally typeset
Search or ask a question
Institution

Tel Aviv University

EducationTel Aviv, Israel
About: Tel Aviv University is a education organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Population & Medicine. The organization has 47791 authors who have published 115959 publications receiving 3904391 citations. The organization is also known as: TAU & Universiṭat Tel-Aviv.


Papers
More filters
Journal ArticleDOI
17 Jun 2016-Science
TL;DR: A fully reversible, two-mode, single-molecule electrical switch with unprecedented levels of accuracy, stability, consistency, and reproducibility is demonstrated.
Abstract: Through molecular engineering, single diarylethenes were covalently sandwiched between graphene electrodes to form stable molecular conduction junctions. Our experimental and theoretical studies of these junctions consistently show and interpret reversible conductance photoswitching at room temperature and stochastic switching between different conductive states at low temperature at a single-molecule level. We demonstrate a fully reversible, two-mode, single-molecule electrical switch with unprecedented levels of accuracy (on/off ratio of ~100), stability (over a year), and reproducibility (46 devices with more than 100 cycles for photoswitching and ~10 5 to 10 6 cycles for stochastic switching).

633 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3098 moreInstitutions (192)
TL;DR: In this article, the authors used the ATLAS detector to detect dijet asymmetry in the collisions of lead ions at the Large Hadron Collider and found that the transverse energies of dijets in opposite hemispheres become systematically more unbalanced with increasing event centrality, leading to a large number of events which contain highly asymmetric di jets.
Abstract: By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse energies of dijets in opposite hemispheres are observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

630 citations

Journal ArticleDOI
01 Oct 2007-Proteins
TL;DR: FireDock's prediction results are comparable to current state‐of‐the‐art refinement methods while its running time is significantly lower, and its refinement procedure significantly improves the ranking of the rigid‐body PatchDock algorithm for these cases.
Abstract: Here, we present FireDock, an efficient method for the refinement and rescoring of rigid-body docking solutions. The refinement process consists of two main steps: (1) rearrangement of the interface side-chains and (2) adjustment of the relative orientation of the molecules. Our method accounts for the observation that most interface residues that are important in recognition and binding do not change their conformation significantly upon complexation. Allowing full side-chain flexibility, a common procedure in refinement methods, often causes excessive conformational changes. These changes may distort preformed structural signatures, which have been shown to be important for binding recognition. Here, we restrict side-chain movements, and thus manage to reduce the false-positive rate noticeably. In the later stages of our procedure (orientation adjustments and scoring), we smooth the atomic radii. This allows for the minor backbone and side-chain movements and increases the sensitivity of our algorithm. FireDock succeeds in ranking a near-native structure within the top 15 predictions for 83% of the 30 enzyme-inhibitor test cases, and for 78% of the 18 semiunbound antibody-antigen complexes. Our refinement procedure significantly improves the ranking of the rigid-body PatchDock algorithm for these cases. The FireDock program is fully automated. In particular, to our knowledge, FireDock's prediction results are comparable to current state-of-the-art refinement methods while its running time is significantly lower. The method is available at http://bioinfo3d.cs.tau.ac.il/FireDock/.

630 citations

Journal ArticleDOI
TL;DR: It is shown that a gas composed of inelastically colliding particles is unstable to the formation of high density clusters, and a possible physical mechanism underlying this instability is proposed.
Abstract: It is shown that a gas composed of inelastically colliding particles is unstable to the formation of high density clusters. A possible physical mechanism underlying this instability is proposed. A theoretical analysis, based on the Jenkins-Richman equations, as well as a numerical simulation of the dynamics of an unforced system of hard disks in a periodic rectangular enclosure, renders support to the proposed mechanism. In particular, a simple formula for the characteristic intercluster distance is derived and found to be in agreement with the numerical results. Applications to granular systems of engineering interest as well as to astrophysics are briefly outlined.

628 citations


Authors

Showing all 48197 results

NameH-indexPapersCitations
Jing Wang1844046202769
Aviv Regev163640133857
Itamar Willner14392776316
M. Morii1341664102074
Halina Abramowicz134119289294
Joost J. Oppenheim13045459601
Gideon Bella129130187905
Avishay Gal-Yam12979556382
Erez Etzion129121685577
Allen Mincer129104080059
Abner Soffer129102882149
Gideon Koren129199481718
Alex Zunger12882678798
Odette Benary12884474238
Gideon Alexander128120181555
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

University of Michigan
342.3K papers, 17.6M citations

94% related

University of California, Los Angeles
282.4K papers, 15.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023210
2022661
20216,424
20205,929
20195,362
20184,889