scispace - formally typeset
Search or ask a question
Institution

Tel Aviv University

EducationTel Aviv, Israel
About: Tel Aviv University is a education organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Population & Medicine. The organization has 47791 authors who have published 115959 publications receiving 3904391 citations. The organization is also known as: TAU & Universiṭat Tel-Aviv.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the statistical characteristics of a box-fitting algorithm to analyze stellar photometric time series in the search for periodic transits by extrasolar planets were studied, and numerical and analytical results were presented to predict the possible detection significance at various signal parameters.
Abstract: We study the statistical characteristics of a box-fitting algorithm to analyze stellar photometric time series in the search for periodic transits by extrasolar planets. The algorithm searches for signals characterized by a periodic alternation between two discrete levels, with much less time spent at the lower level. We present numerical as well as analytical results to predict the possible detection significance at various signal parameters. It is shown that the crucial parameter is the eective signal-to-noise ratio - the expected depth of the transit divided by the standard deviation of the measured photometric average within the transit. When this parameter exceeds the value of 6 we can expect a significant detection of the transit. We show that the box-fitting algorithm performs better than other methods available in the astronomical literature, especially for low signal-to-noise ratios.

1,060 citations

Book
01 Jan 2007
TL;DR: The current computational approaches for theFunctional annotation of proteins are described, including direct methods, which propagate functional information through the network, and module‐assisted methods, who infer functional modules within the network and use those for the annotation task.
Abstract: Functional annotation of proteins is a fundamental problem in the post-genomic era. The recent availability of protein interaction networks for many model species has spurred on the development of computational methods for interpreting such data in order to elucidate protein function. In this review, we describe the current computational approaches for the task, including direct methods, which propagate functional information through the network, and module-assisted methods, which infer functional modules within the network and use those for the annotation task. Although a broad variety of interesting approaches has been developed, further progress in the field will depend on systematic evaluation of the methods and their dissemination in the biological community.

1,054 citations

Book
01 Jan 1995
TL;DR: A close to linear bound on the maximum length of Davenport--Schinzel sequences enable us to derive sharp bounds on the combinatorial structure underlying various geometric problems, which in turn yields efficient algorithms for these problems.
Abstract: An $(n,s)$ Davenport--Schinzel sequence, for positive integers $n$ and $s$, is a sequence composed of $n$ symbols with the properties that no two adjacent elements are equal, and that it does not contain, as a (possibly non-contiguous) subsequence, any alternation $a \cdots b \cdots a \cdots b \cdots$ of length $s+2$ between two distinct symbols $a$ and $b$. The close relationship between Davenport--Schinzel sequences and the combinatorial structure of lower envelopes of collections of functions make the sequences very attractive, because a wide variety of geometric problems can be formulated in terms of lower envelopes. A close to linear bound on the maximum length of Davenport--Schinzel sequences enable us to derive sharp bounds on the combinatorial structure underlying various geometric problems, which in turn yields efficient algorithms for these problems. This paper gives a comprehensive survey on the theory of Davenport--Schinzel sequences and their geometric applications.

1,052 citations

Journal ArticleDOI
TL;DR: The super-twisting second-order sliding-mode algorithm is modified in order to design a velocity observer for uncertain mechanical systems and the finite time convergence of the observer is proved.
Abstract: The super-twisting second-order sliding-mode algorithm is modified in order to design a velocity observer for uncertain mechanical systems. The finite time convergence of the observer is proved. Thus, the observer can be designed independently of the controller. A discrete version of the observer is considered and the corresponding accuracy is estimated.

1,040 citations

Journal ArticleDOI
TL;DR: A uniformly second-order approximation of hyperbolic conservation laws is constructed, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time.
Abstract: We begin the construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws. These schemes share many desirable properties with total variation diminishing schemes, but TVD schemes have at most first-order accuracy, in the sense of truncation error, at extrema of the solution. In this paper we construct a uniformly second-order approximation, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise-linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem and an average of this approximate solution over each cell.

1,031 citations


Authors

Showing all 48197 results

NameH-indexPapersCitations
Jing Wang1844046202769
Aviv Regev163640133857
Itamar Willner14392776316
M. Morii1341664102074
Halina Abramowicz134119289294
Joost J. Oppenheim13045459601
Gideon Bella129130187905
Avishay Gal-Yam12979556382
Erez Etzion129121685577
Allen Mincer129104080059
Abner Soffer129102882149
Gideon Koren129199481718
Alex Zunger12882678798
Odette Benary12884474238
Gideon Alexander128120181555
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

University of Michigan
342.3K papers, 17.6M citations

94% related

University of California, Los Angeles
282.4K papers, 15.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023210
2022661
20216,424
20205,929
20195,362
20184,889