scispace - formally typeset
Search or ask a question
Institution

Tel Aviv University

EducationTel Aviv, Israel
About: Tel Aviv University is a education organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Population & Medicine. The organization has 47791 authors who have published 115959 publications receiving 3904391 citations. The organization is also known as: TAU & Universiṭat Tel-Aviv.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that approximating Clique and Independent Set, even in a very weak sense, is NP-hard, and the class NP contains exactly those languages for which membership proofs can be verified probabilistically in polynomial time.
Abstract: We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof.We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NP-hard.

1,261 citations

Journal ArticleDOI
01 Jun 2002-Proteins
TL;DR: The docking field has come of age, and the time is ripe to present the principles of docking, reviewing the current state of the field from both the computational and the biological points of view.
Abstract: The docking field has come of age. The time is ripe to present the principles of docking, reviewing the current state of the field. Two reasons are largely responsible for the maturity of the computational docking area. First, the early optimism that the very presence of the "correct" native conformation within the list of predicted docked conformations signals a near solution to the docking problem, has been replaced by the stark realization of the extreme difficulty of the next scoring/ranking step. Second, in the last couple of years more realistic approaches to handling molecular flexibility in docking schemes have emerged. As in folding, these derive from concepts abstracted from statistical mechanics, namely, populations. Docking and folding are interrelated. From the purely physical standpoint, binding and folding are analogous processes, with similar underlying principles. Computationally, the tools developed for docking will be tremendously useful for folding. For large, multidomain proteins, domain docking is probably the only rational way, mimicking the hierarchical nature of protein folding. The complexity of the problem is huge. Here we divide the computational docking problem into its two separate components. As in folding, solving the docking problem involves efficient search (and matching) algorithms, which cover the relevant conformational space, and selective scoring functions, which are both efficient and effectively discriminate between native and non-native solutions. It is universally recognized that docking of drugs is immensely important. However, protein-protein docking is equally so, relating to recognition, cellular pathways, and macromolecular assemblies. Proteins function when they are bound to other molecules. Consequently, we present the review from both the computational and the biological points of view. Although large, it covers only partially the extensive body of literature, relating to small (drug) and to large protein-protein molecule docking, to rigid and to flexible. Unfortunately, when reviewing these, a major difficulty in assessing the results is the non-uniformity in the formats in which they are presented in the literature. Consequently, we further propose a way to rectify it here.

1,251 citations

Journal ArticleDOI
TL;DR: Research has shown that different dimensions of psychological distance affect mental construal and that these construals, in turn, guide prediction, evaluation, and behavior.

1,249 citations

Journal ArticleDOI
TL;DR: In this paper, the authors classify possible curvature-generating mechanisms that are provided by lipids that constitute the membrane bilayer and by proteins that interact with, or are embedded in, the membrane.
Abstract: Biological membranes exhibit various function-related shapes, and the mechanism by which these shapes are created is largely unclear. Here, we classify possible curvature-generating mechanisms that are provided by lipids that constitute the membrane bilayer and by proteins that interact with, or are embedded in, the membrane. We describe membrane elastic properties in order to formulate the structural and energetic requirements of proteins and lipids that would enable them to work together to generate the membrane shapes seen during intracellular trafficking.

1,242 citations

Journal ArticleDOI
TL;DR: The exploration and exploitation framework has attracted substantial interest from scholars studying phenomena such as organizational learning, knowledge management, innovation, organizational design, and strategic alliances as discussed by the authors, and it has become an essential lens for interpreting various behaviors and outcomes within and across organizations.
Abstract: Jim March's framework of exploration and exploitation has drawn substantial interest from scholars studying phenomena such as organizational learning, knowledge management, innovation, organizational design, and strategic alliances. This framework has become an essential lens for interpreting various behaviors and outcomes within and across organizations. Despite its straightforwardness, this framework has generated debates concerning the definition of exploration and exploitation, and their measurement, antecedents, and consequences. We critically review the growing literature on exploration and exploitation, discuss various perspectives, raise conceptual and empirical concerns, underscore challenges for further development of this literature, and provide directions for future research.

1,241 citations


Authors

Showing all 48197 results

NameH-indexPapersCitations
Jing Wang1844046202769
Aviv Regev163640133857
Itamar Willner14392776316
M. Morii1341664102074
Halina Abramowicz134119289294
Joost J. Oppenheim13045459601
Gideon Bella129130187905
Avishay Gal-Yam12979556382
Erez Etzion129121685577
Allen Mincer129104080059
Abner Soffer129102882149
Gideon Koren129199481718
Alex Zunger12882678798
Odette Benary12884474238
Gideon Alexander128120181555
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

University of Michigan
342.3K papers, 17.6M citations

94% related

University of California, Los Angeles
282.4K papers, 15.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023210
2022661
20216,424
20205,929
20195,362
20184,889