scispace - formally typeset
Search or ask a question
Institution

University of Milano-Bicocca

EducationMilan, Italy
About: University of Milano-Bicocca is a education organization based out in Milan, Italy. It is known for research contribution in the topics: Population & Blood pressure. The organization has 8972 authors who have published 22322 publications receiving 620484 citations. The organization is also known as: Università degli Studi di Milano-Bicocca & Universita degli Studi di Milano-Bicocca.


Papers
More filters
Journal ArticleDOI
TL;DR: Neural stem cells control their status, at least partly, through Sox2-dependent autocrine mechanisms, and their replication was partially rescued by the addition of SHH and was almost fully rescued by conditioned medium from normal cells.
Abstract: Neural stem cells (NSCs) are controlled by diffusible factors. The transcription factor Sox2 is expressed by NSCs and Sox2 mutations in humans cause defects in the brain and, in particular, in the hippocampus. We deleted Sox2 in the mouse embryonic brain. At birth, the mice showed minor brain defects; shortly afterwards, however, NSCs and neurogenesis were completely lost in the hippocampus, leading to dentate gyrus hypoplasia. Deletion of Sox2 in adult mice also caused hippocampal neurogenesis loss. The hippocampal developmental defect resembles that caused by late sonic hedgehog (Shh) loss. In mutant mice, Shh and Wnt3a were absent from the hippocampal primordium. A SHH pharmacological agonist partially rescued the hippocampal defect. Chromatin immunoprecipitation identified Shh as a Sox2 target. Sox2-deleted NSCs did not express Shh in vitro and were rapidly lost. Their replication was partially rescued by the addition of SHH and was almost fully rescued by conditioned medium from normal cells. Thus, NSCs control their status, at least partly, through Sox2-dependent autocrine mechanisms.

477 citations

Journal ArticleDOI
M. Aguilar, D. Aisa1, Behcet Alpat, A. Alvino  +308 moreInstitutions (42)
TL;DR: The detailed variation with rigidity of the helium flux spectral index is presented for the first time and the spectral index progressively hardens at rigidities larger than 100 GV.
Abstract: Knowledge of the precise rigidity dependence of the helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. A precise measurement of the helium flux in primary cosmic rays with rigidity (momentum/charge) from 1.9 GV to 3 TV based on 50 million events is presented and compared to the proton flux. The detailed variation with rigidity of the helium flux spectral index is presented for the first time. The spectral index progressively hardens at rigidities larger than 100 GV. The rigidity dependence of the helium flux spectral index is similar to that of the proton spectral index though the magnitudes are different. Remarkably, the spectral index of the proton to helium flux ratio increases with rigidity up to 45 GV and then becomes constant; the flux ratio above 45 GV is well described by a single power law.

470 citations

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1428 moreInstitutions (155)
TL;DR: In this article, the population of 47 compact binary mergers detected with a false-alarm rate of 0.614 were dynamically assembled, and the authors found that the BBH rate likely increases with redshift, but not faster than the star formation rate.
Abstract: We report on the population of 47 compact binary mergers detected with a false-alarm rate of 0.01 are dynamically assembled. Third, we estimate merger rates, finding RBBH = 23.9-+8.614.3 Gpc-3 yr-1 for BBHs and RBNS = 320-+240490 Gpc-3 yr-1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility) but not faster than the star formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

468 citations

Journal ArticleDOI
M. Aguilar, L. Ali Cavasonza1, Behcet Alpat2, G. Ambrosi2  +265 moreInstitutions (39)
TL;DR: In the absolute rigidity range ∼60 to ∼500 GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependent.
Abstract: A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 × 105 antiproton events and 2.42 × 109 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton ¯p, proton p, and positron eþ fluxes are found to have nearly identical rigidity dependence and the electron e− flux exhibits a different rigidity dependence. Below 60 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios each reaches a maximum. From ∼60 to ∼500 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

464 citations

Journal ArticleDOI
TL;DR: The New Gravitational-Wave Observatory (NGO) as discussed by the authors, a mission under study by the European Space Agency for launch in the early 2020s, will survey the low-frequency gravitational wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers, the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultra-compact binaries, both detached and mass transferring, in
Abstract: We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultra-compact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

462 citations


Authors

Showing all 9226 results

NameH-indexPapersCitations
Carlo Rovelli1461502103550
Giuseppe Mancia1451369139692
Marco Bersanelli142526105135
Teruki Kamon1422034115633
Marco Colonna13951271166
M. I. Martínez134125179885
A. Mennella13246393236
Roberto Salerno132119783409
Federico Ferri132137689337
Marco Paganoni132143888482
Arabella Martelli131131884029
Sandra Malvezzi129132684401
Andrea Massironi129111578457
Marco Pieri129128582914
Cristina Riccardi129162791452
Network Information
Related Institutions (5)
Sapienza University of Rome
155.4K papers, 4.3M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

96% related

University of Padua
114.8K papers, 3.6M citations

96% related

University of Milan
139.7K papers, 4.6M citations

96% related

VU University Amsterdam
75.6K papers, 3.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023173
2022349
20212,468
20202,253
20191,906
20181,706