scispace - formally typeset
Search or ask a question
Institution

University of Modena and Reggio Emilia

EducationModena, Italy
About: University of Modena and Reggio Emilia is a education organization based out in Modena, Italy. It is known for research contribution in the topics: Population & Medicine. The organization has 8179 authors who have published 22418 publications receiving 671337 citations. The organization is also known as: Università degli Studi di Modena e Reggio Emilia & Universita degli Studi di Modena e Reggio Emilia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a model based on a multi-branch deep architecture was proposed to predict the driver's focus of attention while driving, which part of the scene around the vehicle is more critical for the task.
Abstract: In this work we aim to predict the driver's focus of attention. The goal is to estimate what a person would pay attention to while driving, and which part of the scene around the vehicle is more critical for the task. To this end we propose a new computer vision model based on a multi-branch deep architecture that integrates three sources of information: raw video, motion and scene semantics. We also introduce DR(eye)VE, the largest dataset of driving scenes for which eye-tracking annotations are available. This dataset features more than 500,000 registered frames, matching ego-centric views (from glasses worn by drivers) and car-centric views (from roof-mounted camera), further enriched by other sensors measurements. Results highlight that several attention patterns are shared across drivers and can be reproduced to some extent. The indication of which elements in the scene are likely to capture the driver's attention may benefit several applications in the context of human-vehicle interaction and driver attention analysis.

172 citations

Journal ArticleDOI
TL;DR: A critical review of the published work aims to highlight the most recent basic and clinical data underlying the development of type 2 diabetes, in those with non-alcoholic fatty liver disease.

172 citations

Journal ArticleDOI
TL;DR: It is found that the decrease in E degrees ' of cytochrome c due to Met80 substitution by a nitrogen-donor ligand is almost totally enthalpic in origin, as a result of the stronger electron donor properties of the exogenous ligand which selectively stabilize the ferric state.
Abstract: Axial iron ligation and protein encapsulation of the heme cofactor have been investigated as effectors of the reduction potential (E degrees ') of cytochrome c through direct electrochemistry experiments. Our approach was that of partitioning the E degrees ' changes resulting from binding of imidazole, 2-methyl-imidazole, ammonia, and azide to both cytochrome c and microperoxidase-11 (MP11), into the enthalpic and entropic contributions. N-Acetylmethionine binding to MP11 was also investigated. These ligands replace Met80 and a water molecule axially coordinated to the heme iron in cytochrome c and MP11, respectively. This factorization was achieved through variable temperature E degrees ' measurements. In this way, we have found that (i) the decrease in E degrees ' of cytochrome c due to Met80 substitution by a nitrogen-donor ligand is almost totally enthalpic in origin, as a result of the stronger electron donor properties of the exogenous ligand which selectively stabilize the ferric state; (ii) on the contrary, the binding of the same ligands and N-acetylmethionine to MP11 results in an enthalpic stabilization of the reduced state, whereas the entropic effect invariably decreases E degrees ' (the former effect prevails for the methionine ligand and the latter for the nitrogenous ligands). A comparison of the reduction thermodynamics of cytochrome c and the MP11 adducts offers insight on the effect of changing axial heme ligation and heme insertion into the folded polypeptide chain. Principally, we have found that the overall E degrees ' increase of approximately 400 mV, comparing MP11 and native cytochrome c, consists of two opposite enthalpic and entropic terms of approximately +680 and -280 mV, respectively. The enthalpic term includes contributions from both axial methionine binding (+300 mV) and protein encapsulation of the heme (+380 mV), whereas the entropic term is almost entirely manifest at the stage of axial ligand binding. Both terms are dominated by the effects of water exclusion from the heme environment.

171 citations

Journal ArticleDOI
TL;DR: HCV infection is a risk factor for earlier and facilitated occurrence of CA via viral load and steatosis which modulate atherogenic factors such as inflammation and dysmetabolic milieu.

171 citations

Journal ArticleDOI
TL;DR: In this article, the locations of potential groundwater springs were mapped in an area of 68 km 2 in the Northern Apennines of Italy based on WofE and RBFLN.

171 citations


Authors

Showing all 8322 results

NameH-indexPapersCitations
Carlo M. Croce1981135189007
Gregory Y.H. Lip1693159171742
Geoffrey Burnstock141148899525
Peter M. Rothwell13477967382
Claudio Franceschi12085659868
Lorenzo Galluzzi11847771436
Leonardo M. Fabbri10956660838
David N. Reinhoudt107108248814
Stefano Pileri10063543369
Andrea Bizzeti99116846880
Brian K. Shoichet9828140313
Dante Gatteschi9772748729
Roberta Sessoli9542441458
Thomas A. Buchholz9349433409
Pier Luigi Zinzani9285735476
Network Information
Related Institutions (5)
University of Bologna
115.1K papers, 3.4M citations

97% related

Sapienza University of Rome
155.4K papers, 4.3M citations

97% related

University of Padua
114.8K papers, 3.6M citations

97% related

University of Milan
139.7K papers, 4.6M citations

95% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202376
2022230
20212,354
20202,083
20191,633
20181,450