scispace - formally typeset
Search or ask a question
Institution

University of Oxford

EducationOxford, Oxfordshire, United Kingdom
About: University of Oxford is a education organization based out in Oxford, Oxfordshire, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 99713 authors who have published 258108 publications receiving 12972806 citations. The organization is also known as: Oxford University & Oxon..


Papers
More filters
Journal ArticleDOI
23 Mar 2001-Science
TL;DR: Almost all of the key molecules involved in the innate and adaptive immune response are glycoproteins, and specific glycoforms are involved in recognition events.
Abstract: Almost all of the key molecules involved in the innate and adaptive immune response are glycoproteins. In the cellular immune system, specific glycoforms are involved in the folding, quality control, and assembly of peptide-loaded major histocompatibility complex (MHC) antigens and the T cell receptor complex. Although some glycopeptide antigens are presented by the MHC, the generation of peptide antigens from glycoproteins may require enzymatic removal of sugars before the protein can be cleaved. Oligosaccharides attached to glycoproteins in the junction between T cells and antigen-presenting cells help to orient binding faces, provide protease protection, and restrict nonspecific lateral protein-protein interactions. In the humoral immune system, all of the immunoglobulins and most of the complement components are glycosylated. Although a major function for sugars is to contribute to the stability of the proteins to which they are attached, specific glycoforms are involved in recognition events. For example, in rheumatoid arthritis, an autoimmune disease, agalactosylated glycoforms of aggregated immunoglobulin G may induce association with the mannose-binding lectin and contribute to the pathology.

1,474 citations

Journal ArticleDOI
Rupert R A Bourne1, Seth Flaxman2, Tasanee Braithwaite1, Maria V Cicinelli, Aditi Das, Jost B. Jonas3, Jill E Keeffe4, John H Kempen5, Janet L Leasher6, Hans Limburg, Kovin Naidoo7, Kovin Naidoo8, Konrad Pesudovs9, Serge Resnikoff8, Serge Resnikoff10, Alexander J Silvester11, Gretchen A Stevens12, Nina Tahhan8, Nina Tahhan10, Tien Yin Wong13, Hugh R. Taylor14, Rupert R A Bourne1, Peter Ackland, Aries Arditi, Yaniv Barkana, Banu Bozkurt15, Alain M. Bron16, Donald L. Budenz17, Feng Cai, Robert J Casson18, Usha Chakravarthy19, Jaewan Choi, Maria Vittoria Cicinelli, Nathan Congdon19, Reza Dana20, Rakhi Dandona21, Lalit Dandona22, Iva Dekaris, Monte A. Del Monte23, Jenny deva24, Laura Dreer25, Leon B. Ellwein26, Marcela Frazier25, Kevin D. Frick27, David S. Friedman27, João M. Furtado28, H. Gao29, Gus Gazzard30, Ronnie George, Stephen Gichuhi31, Victor H. Gonzalez, Billy R. Hammond32, Mary Elizabeth Hartnett33, Minguang He14, James F. Hejtmancik26, Flavio E. Hirai34, John J Huang35, April D. Ingram36, Jonathan C. Javitt27, Jost B. Jonas3, Charlotte E. Joslin, John H. Kempen20, John H. Kempen37, Moncef Khairallah, Rohit C Khanna4, Judy E. Kim38, George N. Lambrou39, Van C. Lansingh, Paolo Lanzetta40, Jennifer I. Lim41, Kaweh Mansouri, Anu A. Mathew42, Alan R. Morse, Beatriz Munoz27, David C. Musch23, Vinay Nangia, Maria Palaiou20, Maurizio Battaglia Parodi, Fernando Yaacov Pena42, Tunde Peto19, Harry A. Quigley27, Murugesan Raju43, Pradeep Y. Ramulu27, Alan L. Robin27, Luca Rossetti44, Jinan B. Saaddine45, Mya Sandar46, Janet B. Serle47, Tueng T. Shen22, Rajesh K. Shetty48, Pamela C. Sieving26, Juan Carlos Silva49, Rita S. Sitorus50, Dwight Stambolian37, Gretchen Stevens12, Hugh Taylor14, Jaime Tejedor, James M. Tielsch27, Miltiadis K. Tsilimbaris51, Jan C. van Meurs52, Rohit Varma53, Gianni Virgili54, Jimmy Volmink55, Ya Xing Wang, Ningli Wang56, Sheila K. West27, Peter Wiedemann57, Tien Wong13, Richard Wormald58, Yingfeng Zheng46 
Anglia Ruskin University1, University of Oxford2, Heidelberg University3, L V Prasad Eye Institute4, Massachusetts Eye and Ear Infirmary5, Nova Southeastern University6, University of KwaZulu-Natal7, Brien Holden Vision Institute8, Flinders University9, University of New South Wales10, Royal Liverpool University Hospital11, World Health Organization12, National University of Singapore13, University of Melbourne14, Selçuk University15, University of Burgundy16, University of Miami17, University of Adelaide18, Queen's University Belfast19, Harvard University20, The George Institute for Global Health21, University of Washington22, University of Michigan23, Universiti Tunku Abdul Rahman24, University of Alabama25, National Institutes of Health26, Johns Hopkins University27, University of São Paulo28, Henry Ford Health System29, University College London30, University of Nairobi31, University of Georgia32, University of Utah33, Federal University of São Paulo34, Yale University35, Alberta Children's Hospital36, University of Pennsylvania37, Medical College of Wisconsin38, Novartis39, University of Udine40, University of Illinois at Urbana–Champaign41, Royal Children's Hospital42, University of Missouri43, University of Milan44, Centers for Disease Control and Prevention45, Singapore National Eye Center46, Icahn School of Medicine at Mount Sinai47, Mayo Clinic48, Pan American Health Organization49, University of Indonesia50, University of Crete51, Erasmus University Rotterdam52, University of Southern California53, University of Florence54, Stellenbosch University55, Capital Medical University56, Leipzig University57, Moorfields Eye Hospital58
TL;DR: There is an ongoing reduction in the age-standardised prevalence of blindness and visual impairment, yet the growth and ageing of the world's population is causing a substantial increase in number of people affected, highlighting the need to scale up vision impairment alleviation efforts at all levels.

1,473 citations

Journal ArticleDOI
TL;DR: Optical spectroscopy is used to estimate the exciton binding energy in the mixed-halide crystal to be in the range of 50 meV, and it is shown that such a value is consistent with almost full ionization of the excitonic population under photovoltaic cell operating conditions.
Abstract: Excitonic solar cells, within which bound electron-hole pairs have a central role in energy harvesting, have represented a hot field of research over the last two decades due to the compelling prospect of low-cost solar energy. However, in such cells, exciton dissociation and charge collection occur with significant losses in energy, essentially due to poor charge screening. Organic-inorganic perovskites show promise for overcoming such limitations. Here, we use optical spectroscopy to estimate the exciton binding energy in the mixed-halide crystal to be in the range of 50 meV. We show that such a value is consistent with almost full ionization of the exciton population under photovoltaic cell operating conditions. However, increasing the total photoexcitation density, excitonic species become dominant, widening the perspective of this material for a host of optoelectronic applications.

1,473 citations

Journal ArticleDOI
02 Nov 1995-Nature
TL;DR: It is demonstrated that individual GABAergic interneurons can effectively phase spontaneous firing and subthreshold oscillations in hippocampal pyramidal cells at 4–7 Hz, and this GABAergic mechanism is sufficient to synchronize the firing of pyramsidal cells.
Abstract: SYNCHRONIZATION of neuronal activity is fundamental in the operation of cortical networks. With respect to an ongoing synchronized oscillation, the precise timing of action potentials is an attractive candidate mechanism for information coding. Networks of inhibitory interneurons have been proposed to have a role in entraining cortical, synchronized 40-Hz activity. Here we demonstrate that individual GABAergic interneurons can effectively phase spontaneous firing and subthreshold oscillations in hippocampal pyramidal cells at 0 frequencies (4-7 Hz). The efficiency of this entrainment is due to interaction of GABAA-receptor-mediated hyperpolarizing synaptic events with intrinsic oscillatory mechanisms tuned to this frequency range in pyramidal cells. Moreover, this GABAergic mechanism is sufficient to synchronize the firing of pyramidal cells. Thus, owing to the divergence of each GABAergic interneuron, more than a thousand pyramidal cells may share a common temporal reference established by an individual interneuron.

1,472 citations

Journal ArticleDOI
02 Dec 2004-Nature
TL;DR: It is very likely (confidence level >90%) that human influence has at least doubled the risk of a heatwave exceeding this threshold magnitude in 2003, but in no other year since the start of the instrumental record in 1851.
Abstract: The summer of 2003 was probably the hottest in Europe since at latest ad 1500, and unusually large numbers of heat-related deaths were reported in France, Germany and Italy. It is an ill-posed question whether the 2003 heatwave was caused, in a simple deterministic sense, by a modification of the external influences on climate--for example, increasing concentrations of greenhouse gases in the atmosphere--because almost any such weather event might have occurred by chance in an unmodified climate. However, it is possible to estimate by how much human activities may have increased the risk of the occurrence of such a heatwave. Here we use this conceptual framework to estimate the contribution of human-induced increases in atmospheric concentrations of greenhouse gases and other pollutants to the risk of the occurrence of unusually high mean summer temperatures throughout a large region of continental Europe. Using a threshold for mean summer temperature that was exceeded in 2003, but in no other year since the start of the instrumental record in 1851, we estimate it is very likely (confidence level >90%) that human influence has at least doubled the risk of a heatwave exceeding this threshold magnitude.

1,470 citations


Authors

Showing all 101421 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Douglas G. Altman2531001680344
Salim Yusuf2311439252912
George Davey Smith2242540248373
Yi Chen2174342293080
David J. Hunter2131836207050
Nicholas J. Wareham2121657204896
Christopher J L Murray209754310329
Cyrus Cooper2041869206782
Mark J. Daly204763304452
David Miller2032573204840
Mark I. McCarthy2001028187898
Raymond J. Dolan196919138540
Frank E. Speizer193636135891
Network Information
Related Institutions (5)
University of Cambridge
282.2K papers, 14.4M citations

98% related

University College London
210.6K papers, 9.8M citations

97% related

Imperial College London
209.1K papers, 9.3M citations

96% related

University of Edinburgh
151.6K papers, 6.6M citations

96% related

McGill University
162.5K papers, 6.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023654
20222,554
202117,608
202017,299
201915,037
201813,726