scispace - formally typeset
Search or ask a question
Institution

University of Oxford

EducationOxford, Oxfordshire, United Kingdom
About: University of Oxford is a education organization based out in Oxford, Oxfordshire, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 99713 authors who have published 258108 publications receiving 12972806 citations. The organization is also known as: Oxford University & Oxon..


Papers
More filters
Journal ArticleDOI
TL;DR: How a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data is reviewed.
Abstract: Array programming provides a powerful, compact, expressive syntax for accessing, manipulating, and operating on data in vectors, matrices, and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It plays an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, material science, engineering, finance, and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves and the first imaging of a black hole. Here we show how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring, and analyzing scientific data. NumPy is the foundation upon which the entire scientific Python universe is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Because of its central position in the ecosystem, NumPy increasingly plays the role of an interoperability layer between these new array computation libraries.

4,342 citations

Journal Article
01 Jan 1920-Heart
TL;DR: In this paper, a preliminary attempt was made to determine from blood pressure records the relative influence of the heart action and of vaso-canstriction, and it was suggested that it might be necessary to estimate the duration of ventricular systole for different heart rates.
Abstract: IN a preliminary attempt (which requires considerable modification) to determine from blood-pressure records the relative influence of the heart action and of vaso-canstriction, I suggestedS that it might be necessary to estimate the duration of ventricular systole for different heart rates. In order to obtain this information a number of measurements have been made of electrocardiographic curves, including some obtained by myself and a selection of curves from Dr. T. Lewis’s collection, which he very kindly put at my disposal. Electrical records have been preferred to mechanical, because it is easier to secure accuracy, and it has been shown by many workers that as a rub the electrical and mechanical changes correspond fairly closely. Lewis ,*7 in a comparison of the heart sounds with the electrical changes, found the first sound to commence 0.011 of a second to 0.039 of a second after the commencement of Q, while the second sound started either before or after the end of T but usually within 0.01 of a second of it. WiggersYS1 working with dogs, found the mechanical systole to commence 0.03 to 0.045 after the rise of R, and to terminate 0.034 to 0.048 after the end of T, so that as a rule the two changes corresponded in duration, but he found that adrenalin shortens the duration of the mechanical change more than the electrical, and under these conditions the ventrical contrsction ended before the end of the T wave. In considering, therefore, the relative duration of systole and diastole, both electrical and mechanical records are useful, if these differences be allowed for. Walleflsgivee the following values for the durebtion of mechanical systole with different heart rates, and it will be seen that almost exactly similar figures are obtained by calculation from the formula systole = K Vcycle, where K hae 8 value of 0.343.

4,324 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
TL;DR: In hospitalized adult patients with severe Covid-19, no benefit was observed with lopinavir–ritonavir treatment beyond standard care, and future trials in patients withsevere illness may help to confirm or exclude the possibility of a treatment benefit.
Abstract: Background No therapeutics have yet been proven effective for the treatment of severe illness caused by SARS-CoV-2. Methods We conducted a randomized, controlled, open-label trial involvin...

4,293 citations

Journal ArticleDOI
17 Jul 2014-Immunity
TL;DR: A set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation are described with the goal of unifying experimental standards for diverse experimental scenarios.

4,287 citations


Authors

Showing all 101421 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Douglas G. Altman2531001680344
Salim Yusuf2311439252912
George Davey Smith2242540248373
Yi Chen2174342293080
David J. Hunter2131836207050
Nicholas J. Wareham2121657204896
Christopher J L Murray209754310329
Cyrus Cooper2041869206782
Mark J. Daly204763304452
David Miller2032573204840
Mark I. McCarthy2001028187898
Raymond J. Dolan196919138540
Frank E. Speizer193636135891
Network Information
Related Institutions (5)
University of Cambridge
282.2K papers, 14.4M citations

98% related

University College London
210.6K papers, 9.8M citations

97% related

Imperial College London
209.1K papers, 9.3M citations

96% related

University of Edinburgh
151.6K papers, 6.6M citations

96% related

McGill University
162.5K papers, 6.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023654
20222,554
202117,608
202017,299
201915,037
201813,726