scispace - formally typeset
Search or ask a question
Institution

Walter and Eliza Hall Institute of Medical Research

NonprofitMelbourne, Victoria, Australia
About: Walter and Eliza Hall Institute of Medical Research is a nonprofit organization based out in Melbourne, Victoria, Australia. It is known for research contribution in the topics: Antigen & Immune system. The organization has 5012 authors who have published 10620 publications receiving 873561 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is presented that the P. falciparum erythrocyte membrane protein 1 product of the gene is the parasite ligand mediating CSA binding, paving the way to a more detailed understanding of the pathogenesis of placental infection and potential therapeutic strategies targeting the interaction.
Abstract: Chondroitin sulfate A (CSA) is an important receptor for the sequestration of Plasmodium falciparum in the placenta, but the parasite ligand involved in adhesion has not previously been identified. Here we report the identification of a var gene transcribed in association with binding to CSA and present evidence that the P. falciparum erythrocyte membrane protein 1 product of the gene is the parasite ligand mediating CSA binding. Description of this gene and the implication of P. falciparum erythrocyte membrane protein 1 as the parasite ligand paves the way to a more detailed understanding of the pathogenesis of placental infection and potential therapeutic strategies targeting the interaction.

263 citations

Journal ArticleDOI
TL;DR: The chronic phase of EAMG appears a good model of MG, since in both cases similar concentrations of 7-S immunoglobulin against determinants on muscle AChR other than the toxin binding site are found.
Abstract: Stucture of acetylcholine receptor protein (AChR) purified from Electrophorus electricus (eel) by affinity chromatography is described. AChR is detected in extracts from human muscle, rat muscle, and rat thymus. Rats immunized with eel AChR develop humoral antibodies, a small fraction of which recognize AChR from rat muscle. Rats immunized with AChR exhibit myasthenia, but those immunized with denatured AChR do not. Immunoglobulin fraction of antisera to eel AChR can block the activity of AChR in electroplaques. Sera from patients with myasthenia gravis contain antibodies to AChR from human muscle detectabe at an average value 300-fold the background level in sera from nonmyasthenics. Relationship of thymoma and disease intensity to antibody titer is examined. The chronic phase of EAMG appears a good model of MG, since in both cases similar concentrations of 7-S immunoglobulin against determinants on muscle AChR other than the toxin binding site are found. Assay of anti-AChR antibody in sera from MG patients using AChR from rat muscle gives titers 10%-15% of those obtained using AChR from human muscle, and using AChR from eel gives negligible titers. The assay method described for assaying antibodies against AChR from human muscle is suggested as a diagnostic test for MG.

262 citations

Journal ArticleDOI
TL;DR: It is shown that P. falciparum heterochromatin protein 1 (PfHP1) binds specifically to H3K9me3 but not to other repressive histone methyl marks, which identifies PfHP1 as a major effector of virulence gene silencing and phenotypic variation.
Abstract: Epigenetic processes are the main conductors of phenotypic variation in eukaryotes. The malaria parasite Plasmodium falciparum employs antigenic variation of the major surface antigen PfEMP1, encoded by 60 var genes, to evade acquired immune responses. Antigenic variation of PfEMP1 occurs through in situ switches in mono-allelic var gene transcription, which is PfSIR2-dependent and associated with the presence of repressive H3K9me3 marks at silenced loci. Here, we show that P. falciparum heterochromatin protein 1 (PfHP1) binds specifically to H3K9me3 but not to other repressive histone methyl marks. Based on nuclear fractionation and detailed immuno-localization assays, PfHP1 constitutes a major component of heterochromatin in perinuclear chromosome end clusters. High-resolution genome-wide chromatin immuno-precipitation demonstrates the striking association of PfHP1 with virulence gene arrays in subtelomeric and chromosome-internal islands and a high correlation with previously mapped H3K9me3 marks. These include not only var genes, but also the majority of P. falciparum lineage-specific gene families coding for exported proteins involved in host-parasite interactions. In addition, we identified a number of PfHP1-bound genes that were not enriched in H3K9me3, many of which code for proteins expressed during invasion or at different life cycle stages. Interestingly, PfHP1 is absent from centromeric regions, implying important differences in centromere biology between P. falciparum and its human host. Over-expression of PfHP1 results in an enhancement of variegated expression and highlights the presence of well-defined heterochromatic boundaries. In summary, we identify PfHP1 as a major effector of virulence gene silencing and phenotypic variation. Our results are instrumental for our understanding of this widely used survival strategy in unicellular pathogens.

262 citations

Journal ArticleDOI
TL;DR: Collectively, these results are the first to demonstrate that in normal B cells, NF-κB1 regulates survival of cells in G0, whereas mitogenic activation induced by distinct stimuli requires different Rel/NF-κBs factors to control cell cycle progression and prevent apoptosis.
Abstract: Rel and nuclear factor (NF)-κB1, two members of the Rel/NF-κB transcription factor family, are essential for mitogen-induced B cell proliferation. Using mice with inactivated Rel or NF-κB1 genes, we show that these transcription factors differentially regulate cell cycle progression and apoptosis in B lymphocytes. Consistent with an increased rate of mature B cell turnover in naive nfkb1−/− mice, the level of apoptosis in cultures of quiescent nfkb1−/−, but not c-rel−/−, B cells is higher. The failure of c-rel−/− or nfkb1−/− B cells to proliferate in response to particular mitogens coincides with a cell cycle block early in G1 and elevated cell death. Expression of a bcl-2 transgene prevents apoptosis in resting and activated c-rel−/− and nfkb1−/− B cells, but does not overcome the block in cell cycle progression, suggesting that the impaired proliferation is not simply a consequence of apoptosis and that Rel/NF-κB proteins regulate cell survival and cell cycle control through independent mechanisms. In contrast to certain B lymphoma cell lines in which mitogen-induced cell death can result from Rel/NF-κB–dependent downregulation of c-myc, expression of c-myc is normal in resting and stimulated c-rel−/− B cells, indicating that target gene(s) regulated by Rel that are important for preventing apoptosis may differ in normal and immortalized B cells. Collectively, these results are the first to demonstrate that in normal B cells, NF-κB1 regulates survival of cells in G0, whereas mitogenic activation induced by distinct stimuli requires different Rel/NF-κB factors to control cell cycle progression and prevent apoptosis.

262 citations

Journal ArticleDOI
01 Jul 1986-Blood
TL;DR: CSF induced and enhanced survival of mature human neutrophils and eosinophils in vitro was demonstrated and the lineage specificity of purified murine CSFs was retained in their action on human cells.

262 citations


Authors

Showing all 5041 results

NameH-indexPapersCitations
Martin White1962038232387
Stuart H. Orkin186715112182
Tien Yin Wong1601880131830
Mark J. Smyth15371388783
Anne B. Newman15090299255
James P. Allison13748383336
Scott W. Lowe13439689376
Rajkumar Buyya133106695164
Peter Hall132164085019
Ralph L. Brinster13138256455
Nico van Rooijen13051362623
David A. Hafler12855864314
Andreas Strasser12850966903
Marc Feldmann12566364916
Herman Waldmann11858649942
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

94% related

Rockefeller University
32.9K papers, 2.9M citations

94% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

93% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202311
202235
2021600
2020532
2019481
2018491