scispace - formally typeset
Search or ask a question
Institution

Walter and Eliza Hall Institute of Medical Research

NonprofitMelbourne, Victoria, Australia
About: Walter and Eliza Hall Institute of Medical Research is a nonprofit organization based out in Melbourne, Victoria, Australia. It is known for research contribution in the topics: Antigen & Immune system. The organization has 5012 authors who have published 10620 publications receiving 873561 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings suggest that IL-21 produced by TFH cells during the primary as well as the subsequent responses to T cell-dependent Ag makes a major contribution to eliciting and maintaining long-lived humoral immunity.
Abstract: Differentiation of B cells into Ig-secreting cells (ISC) is critical for the generation of protective humoral immune responses. Because of the important role played by secreted Ig in host protection against infection, it is necessary to identify molecules that control B cell differentiation. Recently, IL-21 was reported to generate ISC from activated human B cells. In this study, we examined the effects of IL-21 on the differentiation of all human mature B cell subsets—neonatal, transitional, naive, germinal center, IgM-memory, and isotype-switched memory cells—into ISC and compared its efficacy to that of IL-10, a well-known mediator of human B cell differentiation. IL-21 rapidly induced the generation of ISC and the secretion of vast quantities IgM, IgG and IgA from all of these B cell subsets. Its effect exceeded that of IL-10 by up to 100-fold, highlighting the potency of IL-21 as a B cell differentiation factor. Strikingly, IL-4 suppressed the stimulatory effects of IL-21 on naive B cells by reducing the expression of B-lymphocyte induced maturation protein-1 (Blimp-1). In contrast, memory B cells were resistant to the inhibitory effects of IL-4. Finally, the ability of human tonsillar CD4+CXCR5+CCR7− T follicular helper (TFH) cells, known to be a rich source of IL-21, to induce the differentiation of autologous B cells into ISC was mediated by the production of IL-21. These findings suggest that IL-21 produced by TFH cells during the primary as well as the subsequent responses to T cell-dependent Ag makes a major contribution to eliciting and maintaining long-lived humoral immunity.

475 citations

Journal ArticleDOI
TL;DR: It is indicated that CD8α+ DCs play a critical role in both tolerance and immunity to cell-associated antigens, providing a potential mechanism by which cytotoxic T lymphocyte can be immunized to viral antigen while maintaining tolerance to self.
Abstract: We previously described a mechanism for the maintenance of peripheral self-tolerance. This involves the cross-presentation of tissue-associated antigens by a bone marrow–derived cell type that stimulates the proliferation and ultimate deletion of self-reactive CD8 T cells. This process has been referred to as cross-tolerance. Here, we characterize the elusive cell type responsible for inducing cross-tolerance as a CD8α+ dendritic cell (DC). To achieve this aim, transgenic mice were generated expressing yellow fluorescent protein (YFP) linked to CTL epitopes for ovalbumin and glycoprotein B (gB) of herpes simplex virus under the rat insulin promoter (RIP). Although tracking of YFP was inconclusive, the use of a highly sensitive gB-specific hybridoma that produced β-galactosidase on encounter with antigen, enabled detection of antigen presentation by cells isolated from the pancreatic lymph node. This showed that a CD11c+CD8α+ cell was responsible for cross-tolerance, the same DC subset as previously implicated in cross-priming. These data indicate that CD8α+ DCs play a critical role in both tolerance and immunity to cell-associated antigens, providing a potential mechanism by which cytotoxic T lymphocyte can be immunized to viral antigens while maintaining tolerance to self.

471 citations

Journal ArticleDOI
21 Aug 2009-Immunity
TL;DR: It is shown that the transcription factor Blimp-1, a crucial regulator of plasma cell differentiation, was required for CD8(+) T cells to differentiate into functional killer T cells in response to influenza virus.

470 citations

Journal ArticleDOI
TL;DR: Data suggest that the mechanism by which SOCS-3 inhibited signaling in cells transfected with a chimeric receptor containing the wild-type gp130 intracellular domain depends on recruitment to the phosphorylated gp130 receptor, and that some of the negative regulatory roles previously attributed to the tyrosine phosphatase SHP-2 might in fact be caused by the action of SOCS.
Abstract: Suppressor of cytokine signaling-3 (SOCS-3) is one member of a family of intracellular inhibitors of signaling pathways initiated by cytokines that use, among others, the common receptor subunit gp130. The SH2 domain of SOCS-3 has been shown to be essential for this inhibitory activity, and we have used a quantitative binding analysis of SOCS-3 to synthetic phosphopeptides to map the potential sites of interaction of SOCS-3 with different components of the gp130 signaling pathway. The only high-affinity ligand found corresponded to the region of gp130 centered around phosphotyrosine-757 (pY757), previously shown to be a docking site for the tyrosine phosphatase SHP-2. By contrast, phosphopeptides corresponding to other regions within gp130, Janus kinase, or signal transducer and activator of transcription proteins bound to SOCS-3 with weak or undetectable affinity. The significance of pY757 in gp130 as a biologically relevant SOCS-3 docking site was investigated by using transfected 293T fibroblasts. Although SOCS-3 inhibited signaling in cells transfected with a chimeric receptor containing the wild-type gp130 intracellular domain, inhibition was considerably impaired for a receptor carrying a Y→F point mutation at residue 757. Taken together, these data suggest that the mechanism by which SOCS-3 inhibits the gp130 signaling pathway depends on recruitment to the phosphorylated gp130 receptor, and that some of the negative regulatory roles previously attributed to the phosphatase SHP-2 might in fact be caused by the action of SOCS-3.

466 citations

Journal ArticleDOI
15 Dec 1993-Blood
TL;DR: There appear to be more regulators with similar or overlapping actions than would seem to be really necessary to achieve the required cell proliferation in hematopoietic populations.

464 citations


Authors

Showing all 5041 results

NameH-indexPapersCitations
Martin White1962038232387
Stuart H. Orkin186715112182
Tien Yin Wong1601880131830
Mark J. Smyth15371388783
Anne B. Newman15090299255
James P. Allison13748383336
Scott W. Lowe13439689376
Rajkumar Buyya133106695164
Peter Hall132164085019
Ralph L. Brinster13138256455
Nico van Rooijen13051362623
David A. Hafler12855864314
Andreas Strasser12850966903
Marc Feldmann12566364916
Herman Waldmann11858649942
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

94% related

Rockefeller University
32.9K papers, 2.9M citations

94% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

93% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202311
202235
2021600
2020532
2019481
2018491