scispace - formally typeset
Search or ask a question
Institution

Wright-Patterson Air Force Base

OtherWright-Patterson AFB, Ohio, United States
About: Wright-Patterson Air Force Base is a other organization based out in Wright-Patterson AFB, Ohio, United States. It is known for research contribution in the topics: Laser & Microstructure. The organization has 5817 authors who have published 9157 publications receiving 292559 citations. The organization is also known as: Wright-Patterson AFB & FFO.


Papers
More filters
Journal ArticleDOI
01 Jan 1972
TL;DR: In this article, it was shown that void formation, void growth, and tensile ductility in an α-β titanium alloy, Ti-5.5V-0.9Fe- 0.5Cu, heat treated to a constant yield strength, is intergranular in nature and occurs when a critical crack length-stress relationship is satisfied.
Abstract: An investigation has shown that it is possible to relate void formation, void growth, and tensile ductility to microstructural features in an α-β titanium alloy, Ti-5.25A1-5.5V-0.9Fe-0.5Cu, heat treated to a constant yield strength. Equations relating tensile void growth rates to microstructure for both equiaxed,E, and Widmanstatten plus grain boundaryα, W + ITG. B.,in aged β morphologies have been derived. A mechanism for void formation at α-β interfaces is presented which accounts for the observed fact that voids do not form at Widmanstatten α platelets. Tensile fracture is shown to be intergranular in nature and occurs when a critical crack length-stress relationship is satisfied. The amount of ductility achievable in a specimen depends upon the rate of void growth. If the rate is large, the void reaches a critical size for fracture at a lower applied stress and strain and hence the ductility is less.

106 citations

Journal ArticleDOI
TL;DR: Silver and titanium dioxide nanoparticles impact development, mating success, and survivorship in Drosophila melanogaster, and if so, if these effects are reversible by antioxidants, and suggest antioxidants as a potential remediation for nanosilver toxicity.

106 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that post-viral olfactory dysfunction can be viewed as a focal neurological deficit in patients with COVID-19, and they postulate that, in people who have recovered from COVID19, a chronic, recrudescent, or permanent Olfactory deficit could be prognostic for an increased likelihood of neurological sequelae or neurodegenerative disorders in the long term.
Abstract: Summary Background The mechanisms by which any upper respiratory virus, including SARS-CoV-2, impairs chemosensory function are not known. COVID-19 is frequently associated with olfactory dysfunction after viral infection, which provides a research opportunity to evaluate the natural course of this neurological finding. Clinical trials and prospective and histological studies of new-onset post-viral olfactory dysfunction have been limited by small sample sizes and a paucity of advanced neuroimaging data and neuropathological samples. Although data from neuropathological specimens are now available, neuroimaging of the olfactory system during the acute phase of infection is still rare due to infection control concerns and critical illness and represents a substantial gap in knowledge. Recent developments The active replication of SARS-CoV-2 within the brain parenchyma (ie, in neurons and glia) has not been proven. Nevertheless, post-viral olfactory dysfunction can be viewed as a focal neurological deficit in patients with COVID-19. Evidence is also sparse for a direct causal relation between SARS-CoV-2 infection and abnormal brain findings at autopsy, and for trans-synaptic spread of the virus from the olfactory epithelium to the olfactory bulb. Taken together, clinical, radiological, histological, ultrastructural, and molecular data implicate inflammation, with or without infection, in either the olfactory epithelium, the olfactory bulb, or both. This inflammation leads to persistent olfactory deficits in a subset of people who have recovered from COVID-19. Neuroimaging has revealed localised inflammation in intracranial olfactory structures. To date, histopathological, ultrastructural, and molecular evidence does not suggest that SARS-CoV-2 is an obligate neuropathogen. Where next? The prevalence of CNS and olfactory bulb pathosis in patients with COVID-19 is not known. We postulate that, in people who have recovered from COVID-19, a chronic, recrudescent, or permanent olfactory deficit could be prognostic for an increased likelihood of neurological sequelae or neurodegenerative disorders in the long term. An inflammatory stimulus from the nasal olfactory epithelium to the olfactory bulbs and connected brain regions might accelerate pathological processes and symptomatic progression of neurodegenerative disease. Persistent olfactory impairment with or without perceptual distortions (ie, parosmias or phantosmias) after SARS-CoV-2 infection could, therefore, serve as a marker to identify people with an increased long-term risk of neurological disease.

106 citations

Journal ArticleDOI
01 Oct 1981
TL;DR: In this paper, the authors make subjective opinion one of the most widely used methods to assess mental workload, however, the value of the data obtained by subjective methods is often limited becaus...
Abstract: Practical considerations make subjective opinion one of the most widely used methods to assess mental workload. However, the value of the data obtained by subjective methods is often limited becaus...

106 citations

Journal ArticleDOI
TL;DR: In this article, the interrelationship between resistivity and hardness was established for three levels of alloying of three noble metals with gold, i.e., platinum (Pt), rhodium (Rh), and ruthenium (Ru) with gold.
Abstract: This study presents a basic step toward the selection methodology of electric contact materials for microelectromechanical systems (MEMS) metal contact switches. This involves the interrelationship between two important parameters, resistivity and hardness, since they provide the guidelines and assessment of contact resistance, wear, deformation and adhesion characteristics of MEMS switches. For this purpose, thin film alloys of three noble metals, platinum (Pt), rhodium (Rh) and ruthenium (Ru) with gold (Au), were investigated. The interrelationship between resistivity and hardness was established for three levels of alloying of these metals with gold. Thin films of gold (Au), platinum (Pt), ruthenium (Rh) and rhodium (Ru) were also characterized to obtain their baseline data for comparison. All films were deposited on silicon substrates. When Ru, Rh and Pt are alloyed with Au, their hardness generally decreases but resistivity increases. This decrease or increase was, in general, dependent upon the amount of alloying.

105 citations


Authors

Showing all 5825 results

NameH-indexPapersCitations
John A. Rogers1771341127390
Liming Dai14178182937
Mark C. Hersam10765946813
Gareth H. McKinley9746734624
Robert E. Cohen9141232494
Michael F. Rubner8730129369
Howard E. Katz8747527991
Melvin E. Andersen8351726856
Eric A. Stach8156542589
Harry L. Anderson8039622221
Christopher K. Ober8063129517
Vladimir V. Tsukruk7948128151
David C. Look7852628666
Richard A. Vaia7632425387
Kirk S. Schanze7351219118
Network Information
Related Institutions (5)
Technion – Israel Institute of Technology
79.3K papers, 2.6M citations

87% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

Virginia Tech
95.2K papers, 2.9M citations

86% related

University of Cincinnati
72.5K papers, 2.6M citations

85% related

University of Tennessee
87K papers, 2.8M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202211
2021279
2020298
2019290
2018272