scispace - formally typeset
Search or ask a question

Showing papers in "ACS Chemical Neuroscience in 2013"


Journal ArticleDOI
TL;DR: The question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms is raised.
Abstract: Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness.

264 citations


Journal ArticleDOI
TL;DR: It is demonstrated that curcumin reduces toxicity by binding to preformed oligomers and fibrils and altering their hydrophobic surface exposure, and the results suggest thatCurcumin and related polyphenolic compounds can be pursued as candidate drug targets for treatment of PD and other neurological diseases.
Abstract: In human beings, Parkinson's disease (PD) is associated with the oligomerization and amyloid formation of α-synuclein (α-Syn). The polyphenolic Asian food ingredient curcumin has proven to be effective against a wide range of human diseases including cancers and neurological disorders. While curcumin has been shown to significantly reduce cell toxicity of α-Syn aggregates, its mechanism of action remains unexplored. Here, using a series of biophysical techniques, we demonstrate that curcumin reduces toxicity by binding to preformed oligomers and fibrils and altering their hydrophobic surface exposure. Further, our fluorescence and two-dimensional nuclear magnetic resonance (2D-NMR) data indicate that curcumin does not bind to monomeric α-Syn but binds specifically to oligomeric intermediates. The degree of curcumin binding correlates with the extent of α-Syn oligomerization, suggesting that the ordered structure of protein is required for effective curcumin binding. The acceleration of aggregation by curcumin may decrease the population of toxic oligomeric intermediates of α-Syn. Collectively; our results suggest that curcumin and related polyphenolic compounds can be pursued as candidate drug targets for treatment of PD and other neurological diseases.

234 citations


Journal ArticleDOI
TL;DR: Protein engineering is used to expand the palette of genetically encoded calcium ion (Ca(2+) indicators to include orange and improved red fluorescent variants, and it is demonstrated that false-positive artifacts in Ca(2+) imaging traces can be avoided by using an appropriately low intensity of blue light for ChR2 activation.
Abstract: We have used protein engineering to expand the palette of genetically encoded calcium ion (Ca2+) indicators to include orange and improved red fluorescent variants, and validated the latter for combined use with optogenetic activation by channelrhodopsin-2 (ChR2). These indicators feature intensiometric signal changes that are 1.7- to 9.7-fold improved relatively to the progenitor Ca2+ indicator, R-GECO1. In the course of this work, we discovered a photoactivation phenomenon in red fluorescent Ca2+ indicators that, if not appreciated and accounted for, can cause false-positive artifacts in Ca2+ imaging traces during optogenetic activation with ChR2. We demonstrate, in both a beta cell line and slice culture of developing mouse neocortex, that these artifacts can be avoided by using an appropriately low intensity of blue light for ChR2 activation.

212 citations


Journal ArticleDOI
TL;DR: In vitro and in vivo evidence is provided for the potential of oleocanthal to enhance Aβ clearance from the brain via up-regulation of P-glycoprotein (P-gp) and LDL lipoprotein receptor related protein-1 (LRP1), major Aβ transport proteins, at the blood-brain barrier (BBB).
Abstract: Oleocanthal, a phenolic component of extra-virgin olive oil, has been recently linked to reduced risk of Alzheimer’s disease (AD), a neurodegenerative disease that is characterized by accumulation of β-amyloid (Aβ) and tau proteins in the brain. However, the mechanism by which oleocanthal exerts its neuroprotective effect is still incompletely understood. Here, we provide in vitro and in vivo evidence for the potential of oleocanthal to enhance Aβ clearance from the brain via up-regulation of P-glycoprotein (P-gp) and LDL lipoprotein receptor related protein-1 (LRP1), major Aβ transport proteins, at the blood-brain barrier (BBB). Results from in vitro and in vivo studies demonstrated similar and consistent pattern of oleocanthal in controlling Aβ levels. In cultured mice brain endothelial cells, oleocanthal treatment increased P-gp and LRP1 expression and activity. Brain efflux index (BEI%) studies of 125I-Aβ40 showed that administration of oleocanthal extracted from extra-virgin olive oil to C57BL/6 wild...

209 citations


Journal ArticleDOI
TL;DR: It is suggested that tanshinones, particularly TS1 compound, offer promising lead compounds with dual protective role in anti-inflammation and antiaggregation for further development of Aβ inhibitors to prevent and disaggregate amyloid formation.
Abstract: The misfolding and aggregation of amyloid-β (Aβ) peptides into amyloid fibrils is regarded as one of the causative events in the pathogenesis of Alzheimer's disease (AD). Tanshinones extracted from Chinese herb Danshen (Salvia Miltiorrhiza Bunge) were traditionally used as anti-inflammation and cerebrovascular drugs due to their antioxidation and antiacetylcholinesterase effects. A number of studies have suggested that tanshinones could protect neuronal cells. In this work, we examine the inhibitory activity of tanshinone I (TS1) and tanshinone IIA (TS2), the two major components in the Danshen herb, on the aggregation and toxicity of Aβ1-42 using atomic force microscopy (AFM), thioflavin-T (ThT) fluorescence assay, cell viability assay, and molecular dynamics (MD) simulations. AFM and ThT results show that both TS1 and TS2 exhibit different inhibitory abilities to prevent unseeded amyloid fibril formation and to disaggregate preformed amyloid fibrils, in which TS1 shows better inhibitory potency than TS2. Live/dead assay further confirms that introduction of a very small amount of tanshinones enables protection of cultured SH-SY5Y cells against Aβ-induced cell toxicity. Comparative MD simulation results reveal a general tanshinone binding mode to prevent Aβ peptide association, showing that both TS1 and TS2 preferentially bind to a hydrophobic β-sheet groove formed by the C-terminal residues of I31-M35 and M35-V39 and several aromatic residues. Meanwhile, the differences in binding distribution, residues, sites, population, and affinity between TS1-Aβ and TS2-Aβ systems also interpret different inhibitory effects on Aβ aggregation as observed by in vitro experiments. More importantly, due to nonspecific binding mode of tanshinones, it is expected that tanshinones would have a general inhibitory efficacy of a wide range of amyloid peptides. These findings suggest that tanshinones, particularly TS1 compound, offer promising lead compounds with dual protective role in anti-inflammation and antiaggregation for further development of Aβ inhibitors to prevent and disaggregate amyloid formation.

166 citations


Journal ArticleDOI
TL;DR: This review summarizes many of the findings on the neuroprotective potential of resveratrol in cerebral stroke, focusing on both the in vitro and in vivo experimental models and some proposed mechanisms of action.
Abstract: Resveratrol, a natural stilbene present at relatively high concentrations in grape skin and seeds and red wine, is known for its purported antioxidant activity in the vascular and nervous systems. In contrast to its direct antioxidant role within the central nervous system, recent research supports a protective mechanism through increasing endogenous cellular antioxidant defenses, which triggers a cascade of parallel neuroprotective pathways. A growing body of in vitro and in vivo evidence indicates that resveratrol acts through multiple pathways and reduces ischemic damage in vital organs, such as the heart and the brain, in various rodent models. Most of the protective biological actions of resveratrol have been associated with its antioxidative, anti-inflammatory, and antiapoptotic properties and other indirect pathways. Continued public interest and increasing resveratrol supplements on the market warrant a review of the available in vitro and in vivo science reported in the stroke-related literature. Rigorous clinical trials evaluating the effects of resveratrol in stroke are absent, though the general population consumption appears to be relatively safe. Resveratrol has shown potential for treating stroke in laboratory animals and in vitro human cell studies, yet there is still a need for human research in preclinical settings. This review summarizes many of the findings on the neuroprotective potential of resveratrol in cerebral stroke, focusing on both the in vitro and in vivo experimental models and some proposed mechanisms of action.

148 citations


Journal ArticleDOI
TL;DR: The objective of this review is to highlight the newly discovered functions played by the monoamine using the Tph1 KO murine model and to outline current findings that led to the discovery of complete serotonergic systems in unexpected organs.
Abstract: Since its identification, 75 years ago, the monoamine serotonin (5-HT) has attracted considerable attention toward its role as a neurotransmitter in the central nervous system. Yet, increasing evidence, from a growing number of research groups, substantiates the fact that 5-HT regulates important nonneuronal functions. Peripheral 5-HT, synthesized by the enzyme tryptophan hydroxyase (Tph) in intestinal cells, was assumed to be distributed throughout the entire body by blood platelets and to behave as a pleiotropic hormone. A decade ago, generation of a mouse model devoid of peripheral 5-HT lead to the discovery of a second isoform of the enzyme Tph and also suggested that 5-HT might act as a local regulator in various organs. The objective of this review is to highlight the newly discovered functions played by the monoamine using the Tph1 KO murine model and to outline current findings that led to the discovery of complete serotonergic systems in unexpected organs. Within an organ, both the presence of local Tph enzymatic activity and serotonergic components are of particular importance as they support the view that 5-HT meets the criteria to be qualified as a monoamine with a paracrine/autocrine function.

129 citations


Journal ArticleDOI
TL;DR: The development and characterization of the first truly potent, effective, and selective GIRK activator, ML297, and it is demonstrated that ML297 is active in two in vivo models of epilepsy, a disease where up to 40% of patients remain with symptoms refractory to present treatments.
Abstract: The G-protein activated, inward-rectifying potassium (K+) channels, “GIRKs”, are a family of ion channels (Kir3.1-Kir3.4) that has been the focus of intense research interest for nearly two decades. GIRKs are comprised of various homo- and heterotetrameric combinations of four different subunits. These subunits are expressed in different combinations in a variety of regions throughout the central nervous system and in the periphery. The body of GIRK research implicates GIRK in processes as diverse as controlling heart rhythm, to effects on reward/addiction, to modulation of response to analgesics. Despite years of GIRK research, very few tools exist to selectively modulate GIRK channels’ activity and until now no tools existed that potently and selectively activated GIRKs. Here we report the development and characterization of the first truly potent, effective, and selective GIRK activator, ML297 (VU0456810). We further demonstrate that ML297 is active in two in vivo models of epilepsy, a disease where up to 40% of patients remain with symptoms refractory to present treatments. The development of ML297 represents a truly significant advancement in our ability to selectively probe GIRK’s role in physiology as well as providing the first tool for beginning to understand GIRK’s potential as a target for a diversity of therapeutic indications.

129 citations


Journal ArticleDOI
TL;DR: It is demonstrated that NHS carbamate 1a (MJN110) alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors.
Abstract: Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzyme’s function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates...

126 citations


Journal ArticleDOI
TL;DR: The effect of thickness and surface charge of the coating layer of SPIONs on the kinetics of fibrillation of Aβ in aqueous solution is demonstrated and suggests that in addition to the presence of particles, which affect the concentration of monomeric protein in solution, there are also effects of binding on the protein conformation.
Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized as promising nanodiagnostic materials due to their biocompatibility, unique magnetic properties, and their application as multimodal contrast agents. As coated SPIONs have potential use in the diagnosis and treatment of various brain diseases such as Alzheimer’s, a comprehensive understanding of their interactions with Aβ and other amyloidogenic proteins is essential prior to their clinical application. Here we demonstrate the effect of thickness and surface charge of the coating layer of SPIONs on the kinetics of fibrillation of Aβ in aqueous solution. A size and surface area dependent “dual” effect on Aβ fibrillation was observed. While lower concentrations of SPIONs inhibited fibrillation, higher concentrations increased the rate of Aβ fibrillation. With respect to coating charge, it is evident that the positively charged SPIONs are capable of promoting fibrillation at significantly lower particle concentrations compared with negatively...

121 citations


Journal ArticleDOI
TL;DR: It is concluded that the use of combined plasma biomarkers not only allows the differentiation of the healthy controls and patients with AD in both the prodromal phase and the dementia phase, but it also allows AD in the prodROMal phase to be distinguished from that in the dementiaphase.
Abstract: A highly sensitive immunoassay, the immunomagnetic reduction, is used to measure several biomarkers for plasma that is related to Alzheimer's disease (AD). These biomarkers include Aβ-40, Aβ-42, and tau proteins. The samples are composed of four groups: healthy controls (n=66), mild cognitive impairment (MCI, n=22), very mild dementia (n=23), and mild-to-serve dementia, all due to AD (n=22). It is found that the concentrations of both Aβ-42 and tau protein for the healthy controls are significantly lower than those of all of the other groups. The sensitivity and the specificity of plasma Aβ-42 and tau protein in differentiating MCI from AD are all around 0.9 (0.88-0.97). However, neither plasma Aβ-42 nor tau-protein concentration is an adequate parameter to distinguish MCI from AD. A parameter is proposed, which is the product of plasma Aβ-42 and tau-protein levels, to differentiate MCI from AD. The sensitivity and specificity are found to be 0.80 and 0.82, respectively. It is concluded that the use of combined plasma biomarkers not only allows the differentiation of the healthy controls and patients with AD in both the prodromal phase and the dementia phase, but it also allows AD in the prodromal phase to be distinguished from that in the dementia phase.

Journal ArticleDOI
TL;DR: It is hypothesize that low oral doses of bexarotene may provide an effective and tolerated therapy for Parkinson's disease (PD) at doses up to 100-fold lower than those effective in rodent cancer models.
Abstract: Nurr1 is a nuclear hormone receptor (NucHR) strongly implicated in the growth, maintenance, and survival of dopaminergic neurons. Nurr1 may be unable to bind ligands directly, but it forms heterodimers with other NucHRs that do. Using bioluminescence resonance energy transfer (BRET) assays to directly monitor interactions of Nurr1 with other NucHRs, we found the cancer drug bexarotene (Targretin, also LGD1069) displayed biased interactions with Nurr1-RXR heterodimers compared with RXR-RXR homodimers. Remarkably, at doses up to 100-fold lower than those effective in rodent cancer models, bexarotene rescued dopamine neurons and reversed behavioral deficits in 6-hydroxydopamine (6-OHDA) lesioned rats. Compared to the high doses used in cancer therapy, low doses of bexarotene have significantly milder side effects including a reduced increase in plasma triglycerides and less suppression of thyroid function. On the basis of extrapolations from rat to human doses, we hypothesize that low oral doses of bexarotene may provide an effective and tolerated therapy for Parkinson's disease (PD).

Journal ArticleDOI
TL;DR: The development of focused ultrasound (FUS) as a noninvasive method for BBB disruption, aiding in drug delivery to the brain is reviewed, causing localized and reversible disruption of the blood-brain barrier.
Abstract: Brain diseases are notoriously difficult to treat due to the presence of the blood-brain barrier (BBB). Here, we review the development of focused ultrasound (FUS) as a noninvasive method for BBB disruption, aiding in drug delivery to the brain. FUS can be applied through the skull to a targeted region in the brain. When combined with microbubbles, FUS causes localized and reversible disruption of the BBB. The cellular mechanisms of BBB disruption are presented. Several therapeutic agents have been delivered to the brain resulting in significant improvements in pathology in models of glioblastoma and Alzheimer’s disease. The requirements for clinical translation of FUS will be discussed.

Journal ArticleDOI
TL;DR: This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia.
Abstract: Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches. Chief among these was the identification of a number of ion channels that either serve as the initial detectors of cold as a stimulus in the peripheral nervous system, or are part of rather sophisticated differential expression patterns of channels that conduct electrical signals, thereby endowing select neurons with properties that are amenable to electrical signaling in the cold. This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia.

Journal ArticleDOI
TL;DR: The history and importance of clozapine to neuroscience in general, as well as for the treatment of schizophrenia, are showcased, and the synthesis, pharmacology, drug metabolism, and adverse events of clazapine are reviewed.
Abstract: Clozapine was the first true breakthrough in schizophrenia treatment since the discovery of chlorpromazine in 1950, effectively treating positive, negative, and some cognitive symptoms, as well as possessing unprecedented efficacy in treatment-resistant patients. Despite over 30 years of intense study, the precise molecular underpinnings that account for clozapine’s unique efficacy remain elusive. In this Viewpoint, we will showcase the history and importance of clozapine to neuroscience in general, as well as for the treatment of schizophrenia, and review the synthesis, pharmacology, drug metabolism, and adverse events of clozapine.

Journal ArticleDOI
TL;DR: The behavioral effects induced by psychedelic drugs in rodent models are reviewed, the translational potential of these findings are discussed, and areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects are defined.
Abstract: The serotonin 5-HT2A receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects.

Journal ArticleDOI
TL;DR: YM-08 is a promising scaffold for the development of Hsp70 inhibitors suitable for use in the central nervous system (CNS), and replacing the cationic pyridinium moiety in MKT-077 with a neutral pyridine might improve its clogP and enhance its BBB penetrance.
Abstract: The molecular chaperone, heat shock protein 70 (Hsp70), is an emerging drug target for treating neurodegenerative tauopathies We recently found that one promising Hsp70 inhibitor, MKT-077, reduces tau levels in cellular models However, MKT-077 does not penetrate the blood-brain barrier (BBB), limiting its use as either a clinical candidate or probe for exploring Hsp70 as a drug target in the central nervous system (CNS) We hypothesized that replacing the cationic pyridinium moiety in MKT-077 with a neutral pyridine might improve its clogP and enhance its BBB penetrance To test this idea, we designed and synthesized YM-08, a neutral analogue of MKT-077 Like the parent compound, YM-08 bound to Hsp70 in vitro and reduced phosphorylated tau levels in cultured brain slices Pharmacokinetic evaluation in CD1 mice showed that YM-08 crossed the BBB and maintained a brain/plasma (B/P) value of ∼025 for at least 18 h Together, these studies suggest that YM-08 is a promising scaffold for the development of Hsp70 inhibitors suitable for use in the CNS

Journal ArticleDOI
TL;DR: The results reinforce the notion that designing suitable ligands which modulate the aggregation of Aβ peptides toward minimally toxic pathways may be a possible therapeutic strategy for Alzheimer's disease.
Abstract: The cellular polyamines spermine, spermidine, and their metabolic precursor putrescine, have long been associated with cell-growth, tumor-related gene regulations, and Alzheimer's disease. Here, we show by in vitro spectroscopy and AFM imaging, that these molecules promote aggregation of amyloid-beta (A beta) peptides into fibrils and modulate the aggregation pathways. NMR measurements showed that the three polyamines share a similar binding mode to monomeric A beta(1-40) peptide. Kinetic ThT studies showed that already very low polyamine concentrations promote amyloid formation: addition of 10 mu M spermine (normal intracellular concentration is similar to 1 mM) significantly decreased the lag and transition times of the aggregation process. Spermidine and putrescine additions yielded similar but weaker effects. CD measurements demonstrated that the three polyamines induce different aggregation pathways, involving different forms of induced secondary structure. This is supported by AFM images showing that the three polyamines induce A beta(1-40) aggregates with different morphologies. The results reinforce the notion that designing suitable ligands which modulate the aggregation of A beta peptides toward minimally toxic pathways may be a possible therapeutic strategy for Alzheimer's disease.

Journal ArticleDOI
TL;DR: It may be concluded that an appropriate 3D culture of neurons enables DRG to positively improve the cellular fate toward further acceleration in tissue regeneration.
Abstract: Engineering the cellular microenvironment has great potential to create a platform technology toward engineering of tissue and organs. This study aims to engineer a neural microenvironment through fabrication of three-dimensional (3D) engineered collagen matrixes mimicking in-vivo-like conditions. Collagen was chemically modified with a pentapeptide epitope consisting of isoleucine-lysine-valine-alanine-valine (IKVAV) to mimic laminin structure supports of the neural extracellular matrix (ECM). Three-dimensional collagen matrixes with and without IKVAV peptide modification were fabricated by freeze-drying technology and chemical cross-linking with glutaraldehyde. Structural information of 3D collagen matrixes indicated interconnected pores structure with an average pore size of 180 μm. Our results indicated that culture of dorsal root ganglion (DRG) cells in 3D collagen matrix was greatly influenced by 3D culture method and significantly enhanced with engineered collagen matrix conjugated with IKVAV peptide. It may be concluded that an appropriate 3D culture of neurons enables DRG to positively improve the cellular fate toward further acceleration in tissue regeneration.

Journal ArticleDOI
TL;DR: All-atom molecular dynamics simulations in explicit solvent of the monomer and dimer of both alloforms with their WT and D7N sequences provide physical insights into the enhanced rate of fibril formation upon D7n mutation and an atomic picture of the D7 n-mediated conformational change on Aβ40 and Aβ42 peptides.
Abstract: Recent experiments have shown that the mutation Tottori (D7N) alters the toxicity, assembly and rate of fibril formation of the wild type (WT) amyloid beta (Aβ) Aβ40 and Aβ42 peptides. We used all-atom molecular dynamics simulations in explicit solvent of the monomer and dimer of both alloforms with their WT and D7N sequences. The monomer simulations starting from a random coil and totaling 3 μs show that the D7N mutation changes the fold and the network of salt bridges in both alloforms. The dimer simulations starting from the amyloid fibrillar states and totaling 4.4 μs also reveal noticeable changes in terms of secondary structure, salt bridge, and topology. Overall, this study provides physical insights into the enhanced rate of fibril formation upon D7N mutation and an atomic picture of the D7N-mediated conformational change on Aβ40 and Aβ42 peptides.

Journal ArticleDOI
TL;DR: The identification of synergism between a 5-HT(2A)R antagonist plus a5- HT(2C)R agonist to attenuate these factors important in relapse indicates the promise of a bifunctional ligand as an anti-addiction pharmacotherapeutic, setting the stage to develop new ligands with improved efficacy, potency, selectivity, and in vivo profiles over the individual molecules.
Abstract: Relapse to cocaine dependence, even after extended abstinence, involves a number of liability factors including impulsivity (predisposition toward rapid, unplanned reactions to stimuli without regard to negative consequences) and cue reactivity (sensitivity to cues associated with cocaine-taking which can promote cocaine-seeking). These factors have been mechanistically linked to serotonin (5-hydroxytryptamine, 5-HT) signaling through the 5-HT(2A) receptor (5-HT(2A)R) and 5-HT(2C)R; either a selective 5-HT(2A)R antagonist or a 5-HT(2C)R agonist suppresses impulsivity and cocaine-seeking in preclinical models. We conducted proof-of-concept analyses to evaluate whether a combination of 5-HT(2A)R antagonist plus 5-HT(2C)R agonist would have synergistic effects over these liability factors for relapse as measured in a 1-choice serial reaction time task and cocaine self-administration/reinstatement assay. Combined administration of a dose of the selective 5-HT(2A)R antagonist M100907 plus the 5-HT(2C)R agonist WAY163909, each ineffective alone, synergistically suppressed cocaine-induced hyperactivity, inherent and cocaine-evoked impulsive action, as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior. The identification of synergism between a 5-HT(2A)R antagonist plus a 5-HT(2C)R agonist to attenuate these factors important in relapse indicates the promise of a bifunctional ligand as an anti-addiction pharmacotherapeutic, setting the stage to develop new ligands with improved efficacy, potency, selectivity, and in vivo profiles over the individual molecules.

Journal ArticleDOI
TL;DR: The amyloid-nanoparticle interaction is highlighted, with the scope to be highly considered by the scientists aiming for diagnostics and/or treatment of AD employing nanoparticles, and recent findings on the "ignored" parameters are discussed.
Abstract: Alzheimer’s disease (AD) is the most common form of dementia. During the recent decade, nanotechnology has been widely considered, as a promising tool, for theranosis (diagnosis and therapy) of AD. Here we first discuss pathophysiology and characteristics of AD with a focus on the amyloid cascade hypothesis. Then magnetic nanoparticles (MNPs) and recent works on their applications in AD, focusing on the superparamagnetic iron oxide nanoparticles (SPIONs), are reviewed. Furthermore, the amyloid–nanoparticle interaction is highlighted, with the scope to be highly considered by the scientists aiming for diagnostics and/or treatment of AD employing nanoparticles. Furthermore, recent findings on the “ignored” parameters (e.g., effect of protein “corona” at the surface of nanoparticles on amyloid-β (Aβ) fibrillation process) are discussed.

Journal ArticleDOI
TL;DR: This novel compound allows mapping of functional dopamine receptors in living brain tissue with exquisite spatial resolution and combines two-photon photorelease of RuBi-Dopa with two-Photon calcium imaging for an optical imaging and manipulation of dendritic spines in live brain slices, demonstrating that spines can express functional dopamine receptor.
Abstract: We introduce a novel caged dopamine compound (RuBi-Dopa) based on ruthenium photochemistry. RuBi-Dopa has a high uncaging efficiency and can be released with visible (blue-green) and IR light in a two-photon regime. We combine two-photon photorelease of RuBi-Dopa with two-photon calcium imaging for an optical imaging and manipulation of dendritic spines in living brain slices, demonstrating that spines can express functional dopamine receptors. This novel compound allows mapping of functional dopamine receptors in living brain tissue with exquisite spatial resolution.

Journal ArticleDOI
TL;DR: A principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro.
Abstract: Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging.

Journal ArticleDOI
TL;DR: The association of α-synuclein to membranes and its adsorbed conformation are of electrostatic origin, combined with van der Waals interactions, but with a very weak correlation to the molecular structure of the anionic lipid headgroup.
Abstract: An amyloid form of the protein α-synuclein is the major component of the intraneuronal inclusions called Lewy bodies, which are the neuropathological hallmark of Parkinson's disease (PD). α-Synuclein is known to associate with anionic lipid membranes, and interactions between aggregating α-synuclein and cellular membranes are thought to be important for PD pathology. We have studied the molecular determinants for adsorption of monomeric α-synuclein to planar model lipid membranes composed of zwitterionic phosphatidylcholine alone or in a mixture with anionic phosphatidylserine (relevant for plasma membranes) or anionic cardiolipin (relevant for mitochondrial membranes). We studied the adsorption of the protein to supported bilayers, the position of the protein within and outside the bilayer, and structural changes in the model membranes using two complementary techniques-quartz crystal microbalance with dissipation monitoring, and neutron reflectometry. We found that the interaction and adsorbed conformation depend on membrane charge, protein charge, and electrostatic screening. The results imply that α-synuclein adsorbs in the headgroup region of anionic lipid bilayers with extensions into the bulk but does not penetrate deeply into or across the hydrophobic acyl chain region. The adsorption to anionic bilayers leads to a small perturbation of the acyl chain packing that is independent of anionic headgroup identity. We also explored the effect of changing the area per headgroup in the lipid bilayer by comparing model systems with different degrees of acyl chain saturation. An increase in area per lipid headgroup leads to an increase in the level of α-synuclein adsorption with a reduced water content in the acyl chain layer. In conclusion, the association of α-synuclein to membranes and its adsorbed conformation are of electrostatic origin, combined with van der Waals interactions, but with a very weak correlation to the molecular structure of the anionic lipid headgroup. The perturbation of the acyl chain packing upon monomeric protein adsorption favors association with unsaturated phospholipids preferentially found in the neuronal membrane.

Journal ArticleDOI
TL;DR: In rodent seizure models, tanshinone IIA showed anticonvulsive activity in the mouse 6-Hz psychomotor seizure test in a biphasic manner and modified seizure thresholds in a complex manner for the mouse i.v. PTZ seizure assay.
Abstract: Danshen or Chinese red sage (Salvia miltiorrhiza, Bunge) is used by traditional Chinese medicine (TCM) practitioners to treat neurological, cardiovascular, and cerebrovascular disorders and is included in some TCM formulations to control epileptic seizures. In this study, acetonic crude extracts of danshen inhibited pentylenetetrazol (PTZ)-induced seizure activity in zebrafish larvae. Subsequent zebrafish bioassay-guided fractionation of the extract resulted in the isolation of four major tanshinones, which suppressed PTZ-induced activity to varying degrees. One of the active tanshinones, tanshinone IIA, also reduced c-fos expression in the brains of PTZ-exposed zebrafish larvae. In rodent seizure models, tanshinone IIA showed anticonvulsive activity in the mouse 6-Hz psychomotor seizure test in a biphasic manner and modified seizure thresholds in a complex manner for the mouse i.v. PTZ seizure assay. Interestingly, tanshinone IIA is used as a prescription drug in China to address cerebral ischemia in patients. Here, we provide the first in vivo evidence demonstrating that tanshinone IIA has anticonvulsant properties as well.

Journal ArticleDOI
TL;DR: Which structural features of AB-001, AB-002, and their analogues govern the cannabimimetic potency of these chemotypes in vitro and in vivo are elucidated.
Abstract: Two novel adamantane derivatives, adamantan-1-yl(1-pentyl-1H-indol-3-yl)methanone (AB-001) and N-(adamtan-1-yl)-1-pentyl-1H-indole-3-carboxamide (SDB-001), were recently identified as cannabimimetic indoles of abuse. Conflicting anecdotal reports of the psychoactivity of AB-001 in humans, and a complete dearth of information about the bioactivity of SDB-001, prompted the preparation of AB-001, SDB-001, and several analogues intended to explore preliminary structure–activity relationships within this class. This study sought to elucidate which structural features of AB-001, SDB-001, and their analogues govern the cannabimimetic potency of these chemotypes in vitro and in vivo. All compounds showed similar full agonist profiles at CB1 (EC50 = 16–43 nM) and CB2 (EC50 = 29–216 nM) receptors in vitro using a FLIPR membrane potential assay, with the exception of SDB-002, which demonstrated partial agonist activity at CB2 receptors. The activity of AB-001, AB-002, and SDB-001 in rats was compared to that of Δ9-t...

Journal ArticleDOI
TL;DR: It is concluded that the linear fragment 22-35 of Aβ is a functional cholesterol-binding domain that could promote the insertion of β-amyloid peptides or amyloid pore formation in cholesterol-rich membrane domains.
Abstract: Alzheimer’s β-amyloid (Aβ) peptides can self-organize into amyloid pores that may induce acute neurotoxic effects in brain cells Membrane cholesterol, which regulates Aβ production and oligomerization, plays a key role in this process Although several data suggested that cholesterol could bind to Aβ peptides, the molecular mechanisms underlying cholesterol/Aβ interactions are mostly unknown On the basis of docking studies, we identified the linear fragment 22–35 of Aβ as a potential cholesterol-binding domain This domain consists of an atypical concatenation of polar/apolar amino acid residues that was not previously found in cholesterol-binding motifs Using the Langmuir film balance technique, we showed that synthetic peptides Aβ17–40 and Aβ22–35, but not Aβ1–16, could efficiently penetrate into cholesterol monolayers The interaction between Aβ22–35 and cholesterol was fully saturable and lipid-specific Single-point mutations of Val-24 and Lys-28 in Aβ22–35 prevented cholesterol binding, whereas m

Journal ArticleDOI
TL;DR: Electrophysiology combined with fluorescence pH measurements and mathematical modeling showed that functional differences would allow differential regulation of luminal acidification and chloride concentration in intracellular compartments and suggests that nonlinear capacitances in mammalian ClC transporters are regulated in a similar manner.
Abstract: The chloride/proton exchangers ClC-3, ClC-4 and ClC-5 are localized in distinct intracellular compartments and regulate their luminal acidity. We used electrophysiology combined with fluorescence pH measurements to compare the functions of these three transporters. Since the expression of WT ClC-3 in the surface membrane was negligible, we removed an N-terminal retention signal for standard electrophysiological characterization of this isoform. This construct (ClC-313-19A) mediated outwardly rectifying coupled Cl(-)/H(+) antiport resembling the properties of ClC-4 and ClC-5. In addition, ClC-3 exhibited large electric capacitance, exceeding the nonlinear capacitances of ClC-4 and ClC-5. Mutations of the proton glutamate, a conserved residue at the internal side of the protein, decreased ion transport but increased nonlinear capacitances in all three isoforms. This suggests that nonlinear capacitances in mammalian ClC transporters are regulated in a similar manner. However, the voltage dependence and the amplitudes of these capacitances differed strongly between the investigated isoforms. Our results indicate that ClC-3 is specialized in mainly performing incomplete capacitive nontransporting cycles, that ClC-4 is an effective coupled transporter, and that ClC-5 displays an intermediate phenotype. Mathematical modeling showed that such functional differences would allow differential regulation of luminal acidification and chloride concentration in intracellular compartments.

Journal ArticleDOI
TL;DR: Increases in endogenous H2O2 in the dorsal striatum attenuated electrically evoked DA release, and also decreased basal DA levels in this brain region will help to disambiguate the chemical mechanisms underlying the progression of neurodegenerative disease states, such as Parkinson's disease, that involve oxidative stress.
Abstract: The dopaminergic neurons of the nigrostriatal dopamine (DA) projection from the substantia nigra to the dorsal striatum become dysfunctional and slowly degenerate in Parkinson’s disease, a neurodegenerative disorder that afflicts more than one million Americans. There is no specific known cause for idiopathic Parkinson’s disease; however, multiple lines of evidence implicate oxidative stress as an underlying factor in both the initiation and progression of the disease. This involves the enhanced generation of reactive oxygen species, including hydrogen peroxide (H2O2), whose role in complex biological processes is not well understood. Using fast-scan cyclic voltammetry at bare carbon-fiber microelectrodes, we have simultaneously monitored and quantified H2O2 and DA fluctuations in intact striatal tissue under basal conditions and in response to the initiation of oxidative stress. Furthermore, we have assessed the effect of acute increases in local H2O2 concentration on both electrically evoked DA release ...