scispace - formally typeset
Search or ask a question

Showing papers in "ACS Medicinal Chemistry Letters in 2013"


Journal ArticleDOI
TL;DR: RG7112 is the first clinical small-molecule MDM2 inhibitor designed to occupy the p53-binding pocket ofMDM2, which stabilizes p53 and activates the p 53 pathway, leading to cell cycle arrest, apoptosis, and inhibition or regression of human tumor xenografts.
Abstract: The p53 tumor suppressor is a potent transcription factor that plays a key role in the regulation of cellular responses to stress It is controlled by its negative regulator MDM2, which binds directly to p53 and inhibits its transcriptional activity MDM2 also targets p53 for degradation by the proteasome Many tumors produce high levels of MDM2, thereby impairing p53 function Restoration of p53 activity by inhibiting the p53-MDM2 interaction may represent a novel approach to cancer treatment RG7112 (2g) is the first clinical small-molecule MDM2 inhibitor designed to occupy the p53-binding pocket of MDM2 In cancer cells expressing wild-type p53, RG7112 stabilizes p53 and activates the p53 pathway, leading to cell cycle arrest, apoptosis, and inhibition or regression of human tumor xenografts

295 citations


Journal ArticleDOI
TL;DR: Structures of recombinant human acetylcholinesterase in complex with the natural product inhibitors dihydrotanshinone I and territrem B reveal diHydrotanone I binding that is specific to only the peripheral site and territ Rem B binding that spans both sites and distorts the protein backbone in the peripheral sites.
Abstract: Acetylcholinesterase is a critical enzyme that regulates neurotransmission by degrading the neurotransmitter acetylcholine in synapses of the nervous system. It is an important target for both therapeutic drugs that treat Alzheimer’s disease and chemical warfare agents that cripple the nervous system and cause death through paralysis. The enzyme has both catalytic and peripheral sites to which inhibitors may bind. Structures of recombinant human acetylcholinesterase in complex with the natural product inhibitors dihydrotanshinone I and territrem B reveal dihydrotanshinone I binding that is specific to only the peripheral site and territrem B binding that spans both sites and distorts the protein backbone in the peripheral site. These inhibitors may function as important molecular templates for therapeutics used for treatment of disease and protection against nerve agents.

182 citations


Journal ArticleDOI
TL;DR: In continuation of the drug discovery program, a strategy to decrease inhibitor lipophilicity is applied as a means to improve physical properties and pharmacokinetics and is selected for advancement to preclinical development.
Abstract: We recently reported the discovery of GSK2606414 (1), a selective first in class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), which inhibited PERK activation in cells and demonstrated tumor growth inhibition in a human tumor xenograft in mice. In continuation of our drug discovery program, we applied a strategy to decrease inhibitor lipophilicity as a means to improve physical properties and pharmacokinetics. This report describes our medicinal chemistry optimization culminating in the discovery of the PERK inhibitor GSK2656157 (6), which was selected for advancement to preclinical development.

173 citations


Journal ArticleDOI
TL;DR: The discovery and biological evaluation of GSK2118436 is reported, a selective inhibitor of Raf kinases with potent in vitro activity in oncogenic B-Raf-driven melanoma and colorectal carcinoma cells and robust in vivo antitumor and pharmacodynamic activity in mouse models of B- Raf(V600E) human melanoma.
Abstract: Hyperactive signaling of the MAP kinase pathway resulting from the constitutively active B-RafV600E mutated enzyme has been observed in a number of human tumors, including melanomas. Herein we report the discovery and biological evaluation of GSK2118436, a selective inhibitor of Raf kinases with potent in vitro activity in oncogenic B-Raf-driven melanoma and colorectal carcinoma cells and robust in vivo antitumor and pharmacodynamic activity in mouse models of B-RafV600E human melanoma. GSK2118436 was identified as a development candidate, and early clinical results have shown significant activity in patients with B-Raf mutant melanoma.

166 citations


Journal ArticleDOI
TL;DR: A significant reduction of the systolic blood pressure of anesthetized normotensive rats was observed after its oral administration and highlighted the potential of arylthioamides 1-3 and 7 as H2S-donors for basic studies, and for the rational design/development of promising pharmacotherapeutic agents to treat cardiovascular diseases.
Abstract: A small library of arylthioamides 1-12 was easily synthesized, and their H2S-releasing properties were evaluated both in the absence or in the presence of an organic thiol such as l-cysteine. A number of arylthioamides (1-3 and 7) showed a slow and l-cysteine-dependent H2S-releasing mechanism, similar to that exhibited by the reference slow H2S-releasing agents, such as diallyl disulfide (DADS) and the phosphinodithioate derivative GYY 4137. Compound 1 strongly abolished the noradrenaline-induced vasoconstriction in isolated rat aortic rings and hyperpolarized the membranes of human vascular smooth muscle cells in a concentration-dependent fashion. Finally, a significant reduction of the systolic blood pressure of anesthetized normotensive rats was observed after its oral administration. Altogether these results highlighted the potential of arylthioamides 1-3 and 7 as H2S-donors for basic studies, and for the rational design/development of promising pharmacotherapeutic agents to treat cardiovascular diseases.

136 citations


Journal ArticleDOI
TL;DR: The discovery of a new class of FAP inhibitors with a N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine) scaffold is presented and the effects of substituting the quinoline ring and varying the position of its sp(2) hybridized nitrogen atom are explored.
Abstract: Fibroblast activation protein (FAP) is a serine protease that is generally accepted to play an important role in tumor growth and other diseases involving tissue remodeling. Currently there are no FAP inhibitors with reported selectivity toward both the closely related dipeptidyl peptidases (DPPs) and prolyl oligopeptidase (PREP). We present the discovery of a new class of FAP inhibitors with a N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine) scaffold. We have explored the effects of substituting the quinoline ring and varying the position of its sp2 hybridized nitrogen atom. The most promising inhibitors combined low nanomolar FAP inhibition and high selectivity indices (>103) with respect to both the DPPs and PREP. Preliminary experiments on a representative inhibitor demonstrate that plasma stability, kinetic solubility, and log D of this class of compounds can be expected to be satisfactory.

133 citations


Journal ArticleDOI
TL;DR: An exemplar from the furo[2,3-d]pyrimidine series showed a dose proportional response in protection from hypothermia in a mouse model of TNFα induced lethal shock.
Abstract: Potent inhibitors of RIP1 kinase from three distinct series, 1-aminoisoquinolines, pyrrolo[2,3-b]pyridines, and furo[2,3-d]pyrimidines, all of the type II class recognizing a DLG-out inactive conformation, were identified from screening of our in-house kinase focused sets. An exemplar from the furo[2,3-d]pyrimidine series showed a dose proportional response in protection from hypothermia in a mouse model of TNFα induced lethal shock.

132 citations


Journal ArticleDOI
TL;DR: A novel series of alkoxyimino derivatives as S1P1 agonists were discovered through de novo design using FTY720 as the chemical starting point, which has recently completed phase 2 clinical trials in patients with relapsing-remitting multiple sclerosis.
Abstract: A novel series of alkoxyimino derivatives as S1P1 agonists were discovered through de novo design using FTY720 as the chemical starting point. Extensive structure–activity relationship studies led to the discovery of (E)-1-(4-(1-(((4-cyclohexyl-3-(trifluoromethyl)benzyl)oxy)imino)ethyl)-2-ethylbenzyl)azetidine-3-carboxylic acid (32, BAF312, Siponimod), which has recently completed phase 2 clinical trials in patients with relapsing–remitting multiple sclerosis.

131 citations


Journal ArticleDOI
TL;DR: The synthesis and characterization of MKT-077 analogs designed for greater stability are reported, and NMR titration experiments suggested that these analogs bind an allosteric site that is known to accommodate MKT -077.
Abstract: The rhodacyanine, MKT-077, has antiproliferative activity against cancer cell lines through its ability to inhibit members of the heat shock protein 70 (Hsp70) family of molecular chaperones. However, MKT-077 is rapidly metabolized, which limits its use as either a chemical probe or potential therapeutic. We report the synthesis and characterization of MKT-077 analogues designed for greater stability. The most potent molecules, such as 30 (JG-98), were at least 3-fold more active than MKT-077 against the breast cancer cell lines MDA-MB-231 and MCF-7 (EC50 values of 0.4 ± 0.03 and 0.7 ± 0.2 μM, respectively). The analogues modestly destabilized the chaperone clients, Akt1 and Raf1, and induced apoptosis in these cells. Further, the microsomal half-life of JG-98 was improved at least 7-fold (t1/2 = 37 min) compared to MKT-077 (t1/2 < 5 min). Finally, NMR titration experiments suggested that these analogues bind an allosteric site that is known to accommodate MKT-077. These studies advance MKT-077 analogues as chemical probes for studying Hsp70s roles in cancer.

128 citations


Journal ArticleDOI
TL;DR: A most potent, small molecule, nonphosphorylated STAT3 inhibitor, 31 (SH-4-54) that strongly binds to STAT3 protein and effectively suppresses STAT3 phosphorylation and its downstream transcriptional targets at low nM concentrations is reported.
Abstract: The STAT3 gene is abnormally active in glioblastoma (GBM) and is a critically important mediator of tumor growth and therapeutic resistance in GBM. Thus, for poorly treated brain cancers such as gliomas, astrocytomas, and glioblastomas, which harbor constitutively activated STAT3, a STAT3-targeting therapeutic will be of significant importance. Herein, we report a most potent, small molecule, nonphosphorylated STAT3 inhibitor, 31 (SH-4-54) that strongly binds to STAT3 protein (KD = 300 nM). Inhibitor 31 potently kills glioblastoma brain cancer stem cells (BTSCs) and effectively suppresses STAT3 phosphorylation and its downstream transcriptional targets at low nM concentrations. Moreover, in vivo, 31 exhibited blood–brain barrier permeability, potently controlled glioma tumor growth, and inhibited pSTAT3 in vivo. This work, for the first time, demonstrates the power of STAT3 inhibitors for the treatment of BTSCs and validates the therapeutic efficacy of a STAT3 inhibitor for GBM clinical application.

110 citations


Journal ArticleDOI
TL;DR: Compound 11 (HJC0152) has been demonstrated to significantly suppress MDA-MB-231 xenograft tumor growth in vivo, indicating its great potential as efficacious and orally bioavailable therapeutics for human cancer.
Abstract: Niclosamide has been identified to potently inhibit the activation, nuclear translocation, and transactivation of STAT3. Nevertheless, the poor aqueous solubility and bioavailability of niclosamide have hindered its further clinical development for cancer therapy. To discover new molecules with enhanced druglike properties, a series of novel O-alkylamino-tethered derivatives of niclosamide have been designed, synthesized, and biologically evaluated. Among them, compound 11 (HJC0152) has been demonstrated to significantly suppress MDA-MB-231 xenograft tumor growth in vivo (ip and po), indicating its great potential as efficacious and orally bioavailable therapeutics for human cancer.

Journal ArticleDOI
TL;DR: Next generation nanomedicine will rely on innovative nanomaterials capable of unprecedented performance, and which ones are the most promising candidates for a medicinal chemist?
Abstract: Next generation nanomedicine will rely on innovative nanomaterials capable of unprecedented performance. Which ones are the most promising candidates for a medicinal chemist?

Journal ArticleDOI
TL;DR: Crystal structures of the wild-type and T790M/L858R double mutant EGFR kinases with reversible and irreversible pyrrolo[3,2-d]pyrimidine inhibitors based on analogues of TAK-285 and neratinib are determined and provide structural insights for understanding the structure-activity relationships that should contribute to the development of potent inhibitors against drug-sensitive or -resistant EGFR mutations.
Abstract: The epidermal growth factor receptor (EGFR) family plays a critical role in vital cellular processes and in various cancers. Known EGFR inhibitors exhibit distinct antitumor responses against the various EGFR mutants associated with nonsmall-cell lung cancer. The L858R mutation enhances clinical sensitivity to gefitinib and erlotinib as compared with wild type and reduces the relative sensitivity to lapatinib. In contrast, the T790M mutation confers drug resistance to gefitinib and erlotinib. We determined crystal structures of the wild-type and T790M/L858R double mutant EGFR kinases with reversible and irreversible pyrrolo[3,2-d]pyrimidine inhibitors based on analogues of TAK-285 and neratinib. In these structures, M790 adopts distinct conformations to accommodate different inhibitors, whereas R858 allows conformational variations of the activation loop. These results provide structural insights for understanding the structure-activity relationships that should contribute to the development of potent inhibitors against drug-sensitive or -resistant EGFR mutations.

Journal ArticleDOI
TL;DR: A structure-based drug design effort lead to a novel isoxazole azepine scaffold that showed good potency in biochemical and cellular assays and oral activity in an in vivo model of BET inhibition.
Abstract: The identification of a novel series of small molecule BET inhibitors is described. Using crystallographic binding modes of an amino-isoxazole fragment and known BET inhibitors, a structure-based drug design effort lead to a novel isoxazole azepine scaffold. This scaffold showed good potency in biochemical and cellular assays and oral activity in an in vivo model of BET inhibition.

Journal ArticleDOI
TL;DR: 8-hydroxy-2-quinolinecarbaldehyde showed the best in vitro cytotoxicity against the human cancer cell lines, including MDA231, T-47D, Hs578t, SaoS2, K562, SKHep1 and Hep3B and the experimental results suggested that compound 3 has a good potential as an antitumor agent.
Abstract: This letter describes the preparation of quinoline derivatives and their cytotoxic potentials toward human carcinoma cell lines. Among the selected compounds, 8-hydroxy-2-quinolinecarbaldehyde (3) showed the best in vitro cytotoxicity against the human cancer cell lines, including MDA231, T-47D, Hs578t, SaoS2, K562, SKHep1 (with a MTS50 range of 12.5–25 μg/mL) and Hep3B (with a MTS50 range of 6.25±0.034 μg/mL). The in vivo antitumor activity of compound 3 on subcutenaous Hep3B hepatocellular carcinoma xenograft in athymic nude mice was then studied. The results showed that the dose of 10 mg/kg/day of compound 3 with intraperitoneal injection for 9 days totally abolished the growth of the xenograft tumor of Hep3B with no histological damage on vital organs as compared with the control. The experimental results suggested that compound 3 has a good potential as an antitumor agent.

Journal ArticleDOI
TL;DR: Results indicate that readily synthesized imidazo[1,2-a]pyridine-3-carboxamides are an exciting new class of potent, selective anti-TB agents that merit additional development opportunities.
Abstract: A set of 14 imidazo[1,2-a]pyridine-3-carboxamides was synthesized and screened against Mycobacterium tuberculosis H37Rv. The minimum inhibitory concentrations of 12 of these agents were ≤1 μM against replicating bacteria and 5 compounds (9, 12, 16, 17, and 18) had MIC values ≤0.006 μM. Compounds 13 and 18 were screened against a panel of MDR and XDR drug resistant clinical Mtb strains with the potency of 18 surpassing that of clinical candidate PA-824 by nearly 10-fold. The in vivo pharmacokinetics of compounds 13 and 18 were evaluated in male mice by oral (PO) and intravenous (IV) routes. These results indicate that readily synthesized imidazo[1,2-a]pyridine-3-carboxamides are an exciting new class of potent, selective anti-TB agents that merit additional development opportunities.

Journal ArticleDOI
TL;DR: This approach of removing all the fully sp(3) C-Hs from a tert-butyl group gives a trifluoromethylcyclopropyl group, which increased metabolic stability and had consistently higher metabolic stability in vitro and in vivo compared to their tert- butyl-containing counterparts.
Abstract: Susceptibility to metabolism is a common issue with the tert-butyl group on compounds of medicinal interest. We demonstrate an approach of removing all the fully sp3 C–Hs from a tert-butyl group: replacing some C–Hs with C–Fs and increasing the s-character of the remaining C–Hs. This approach gave a trifluoromethylcyclopropyl group, which increased metabolic stability. Trifluoromethylcyclopropyl-containing analogues had consistently higher metabolic stability in vitro and in vivo compared to their tert-butyl-containing counterparts.

Journal ArticleDOI
TL;DR: A series of new imidazopyridines with potential therapeutic effects in acute inflammatory diseases were synthesized and screened for anti-inflammatory activities and showed excellent inhibition of the expression of inflammatory cytokines in LPS-stimulated macrophages.
Abstract: Sepsis, an acute inflammatory disease, remains the most common cause of death in intensive care units. A series of benzimidazole and imidazopyridine derivatives were synthesized and screened for anti-inflammatory activities, and the imidazopyridine series showed excellent inhibition of the expression of inflammatory cytokines in LPS-stimulated macrophages. Compounds X10, X12, X13, X14, and X15 inhibited TNF-α and IL-6 release in a dose-dependent manner, and X12 showed no cytotoxicity in hepatic cells. Furthermore, X12 exhibited a significant protection against LPS-induced septic death in mouse models. Together, these data present a series of new imidazopyridines with potential therapeutic effects in acute inflammatory diseases.

Journal ArticleDOI
TL;DR: This work investigated in depth the example of zinc for a specific project and in retrospect in various HTS screens at Roche and proposes a straightforward counter screen using the chelator TPEN to rule out inhibition caused by zinc.
Abstract: Organic impurities in compound libraries are known to often cause false-positive signals in screening campaigns for new leads, but organic impurities do not fully account for all false-positive results. We discovered inorganic impurities in our screening library that can also cause positive signals for a variety of targets and/or readout systems, including biochemical and biosensor assays. We investigated in depth the example of zinc for a specific project and in retrospect in various HTS screens at Roche and propose a straightforward counter screen using the chelator TPEN to rule out inhibition caused by zinc.

Journal ArticleDOI
TL;DR: A metabolomics approach is used to interrogate the mechanism of antibiotic action of d-cycloserine, a second line antibiotic used in the treatment of multidrug resistant Mycobacterium tuberculosis infections to shed light on mechanisms surrounding d-Ala-mediated antagonism of DCS growth inhibition and provide evidence for a postantibiotic effect for this drug.
Abstract: Stable isotope-mass spectrometry (MS)-based metabolomic profiling is a powerful technique for following changes in specific metabolite pool sizes and metabolic flux under various experimental conditions in a test organism or cell type. Here, we use a metabolomics approach to interrogate the mechanism of antibiotic action of d-cycloserine (DCS), a second line antibiotic used in the treatment of multidrug resistant Mycobacterium tuberculosis infections. We use doubly labeled 13C α-carbon-2H l-alanine to allow tracking of both alanine racemase and d-alanine:d-alanine ligase activity in M. tuberculosis challenged with DCS and reveal that d-alanine:d-alanine ligase is more strongly inhibited than alanine racemase at equivalent DCS concentrations. We also shed light on mechanisms surrounding d-Ala-mediated antagonism of DCS growth inhibition and provide evidence for a postantibiotic effect for this drug. Our results illustrate the potential of metabolomics in cellular drug-target engagement studies and consequently have broad implications in future drug development and target validation ventures.

Journal ArticleDOI
TL;DR: Two 1-hydroxypyridin-2-one compounds that are potent inhibitors of R132H and R132C IDH1 mutants with Ki values as low as 120 nM are found and revealed the structural basis for the high enzyme selectivity of these compounds.
Abstract: Mutations in isocitrate dehydrogenase (IDH), a key enzyme in the tricarboxylic acid cycle, have recently been found in ~75% glioma and ~20% acute myeloid leukemia. Different from the wild-type enzyme, mutant IDH1 catalyzes the reduction of α-ketoglutaric acid to D-2-hydroxyglutaric acid. Strong evidence has shown mutant IDH1 represents a novel target for this type of cancer. We found two 1-hydroxypyridin-2-one compounds that are potent inhibitors of R132H and R132C IDH1 mutants with Ki values as low as 120 nM. These compounds exhibit >60-fold selectivity against wild-type IDH1 and can inhibit the production of D-2-hydroxyglutaric acid in IDH1 mutated cells, representing novel chemical probes for cancer biology studies. We also report the first inhibitor-bound crystal structures of IDH1(R132H), showing these inhibitors have H-bond, electrostatic and hydrophobic interactions with the mutant enzyme. Comparison with the substrate-bound IDH1 structures revealed the structural basis for the high enzyme selectivity of these compounds.

Journal ArticleDOI
TL;DR: The development of this underutilized scaffold for the discovery of tropolone derivatives that function as isozyme-selective inhibitors of the validated anticancer drug target, histone deacetylase (HDAC) is described.
Abstract: Natural products have long been recognized as a rich source of potent therapeutics but further development is often limited by high structural complexity and high molecular weight. In contrast, at the core of the thujaplicins is a lead-like tropolone scaffold characterized by relatively low molecular weight, ample sites for diversification, and metal-binding functionality poised for targeting a range of metalloenzyme drug targets. Here, we describe the development of this underutilized scaffold for the discovery of tropolone derivatives that function as isozyme-selective inhibitors of the validated anticancer drug target, histone deacetylase (HDAC). Several monosubstituted tropolones display remarkable levels of selectivity for HDAC2 and potently inhibit the growth of T-cell lymphocyte cell lines. The tropolones represent a new chemotype of isozyme-selective HDAC inhibitors.

Journal ArticleDOI
TL;DR: In vivo, a drug molecule undergoes its first chemical transformation within the liver via CYP450-catalyzed oxidation via aromatic hydroxylation, alkyl oxidation, glutathione conjugation, or sulfoxidation and it is demonstrated that such metabolites can be synthesized by flow electrolysis at the 10 to 100 mg scale, and the purified products are fully characterized.
Abstract: In vivo, a drug molecule undergoes its first chemical transformation within the liver via CYP450-catalyzed oxidation. The chemical outcome of the first pass hepatic oxidation is key information to any drug development process. Electrochemistry can be used to simulate CYP450 oxidation, yet it is often confined to the analytical scale, hampering product isolation and full characterization. In an effort to replicate hepatic oxidations, while retaining high throughput at the preparative scale, microfluidic technology and electrochemistry are combined in this study by using a microfluidic electrochemical cell. Several commercial drugs were subjected to continuous-flow electrolysis. They were chosen for their various chemical reactivity: their metabolites in vivo are generated via aromatic hydroxylation, alkyl oxidation, glutathione conjugation, or sulfoxidation. It is demonstrated that such metabolites can be synthesized by flow electrolysis at the 10 to 100 mg scale, and the purified products are fully charac...

Journal ArticleDOI
TL;DR: A novel double activatable prodrug system, containing a photocleavable aminoacrylate-linker and a deactivated photosensitizer, is designed and synthesized to achieve the spatiotemporally controlled release of parent drugs using visible light.
Abstract: We designed and synthesized a novel double activatable prodrug system (drug–linker–deactivated photosensitizer), containing a photocleavable aminoacrylate-linker and a deactivated photosensitizer, to achieve the spatiotemporally controlled release of parent drugs using visible light. Three prodrugs of CA-4, SN-38, and coumarin were prepared to demonstrate the activation of deactivated photosensitizer by cellular esterase and the release of parent drugs by visible light (540 nm) via photounclick chemistry. Among these prodrugs, nontoxic coumarin prodrug was used to quantify the release of parent drug in live cells. About 99% coumarin was released from the coumarin prodrug after 24 h of incubation with MCF-7 cells followed by irradiation with low intensity visible light (8 mW/cm2) for 30 min. Less toxic prodrugs of CA-4 and SN-38 killed cancer cells as effectively as free drugs after the double activation.

Journal ArticleDOI
TL;DR: The discovery of GPR40 full agonists containing conformationally constrained tricyclic spirocycles and their structure-activity relationships leading to more potent agonists such as AM-5262 with improved rat PK profile and general selectivity profile are presented.
Abstract: GPR40 (FFAR1 or FFA1) is a target of high interest being pursued to treat type II diabetes due to its unique mechanism leading to little risk of hypoglycemia. We recently reported the discovery of AM-1638 (2), a potent full agonist of GPR40. In this report, we present the discovery of GPR40 full agonists containing conformationally constrained tricyclic spirocycles and their structure-activity relationships leading to more potent agonists such as AM-5262 (26) with improved rat PK profile and general selectivity profile. AM-5262 enhanced glucose stimulated insulin secretion (mouse and human islets) and improved glucose homeostasis in vivo (OGTT in HF/STZ mice) when compared to AM-1638.

Journal ArticleDOI
TL;DR: These compounds identified through rational design are the first ones possessing reproduction inhibition activity against tick-borne flaviviruses.
Abstract: Flaviviruses form a large family of enveloped viruses affecting millions of people over the world. To date, no specific therapy was suggested for the infected people, making the treatment exclusively symptomatic. Several attempts were performed earlier for the design of fusion inhibitors for mosquito-borne flaviviruses, whereas for the tick-borne flaviviruses such design had not been performed. We have constructed homology models of envelope glycoproteins of tick-transmitted flaviviruses with the detergent binding pocket in the open state. Molecular docking of substituted 1,4-dihydropyridines and pyrido[2,1-b][1,3,5]thiadiazines was made against these models, and 89 hits were selected for the in vitro experimental evaluation. Seventeen compounds showed significant inhibition against tick-borne encephalitis virus, Powassan virus, or Omsk hemorrhagic fever virus in the 50% plaque reduction test in PEK cells. These compounds identified through rational design are the first ones possessing reproduction inhibition activity against tick-borne flaviviruses.

Journal ArticleDOI
TL;DR: As innovative nanomaterials, CNPs could be utilized both as nontoxic drug delivery system and bioimaging and foresee a great future for CNPs in cancer diagnostic and therapy.
Abstract: Nanotechnology provides exciting opportunities for the development of novel, clinically relevant diagnostic and therapeutic multifunctional systems. Fluorescent carbon nanoparticles (CNPs) due to their intrinsic fluorescence and high biocompatibility are among the best candidates. As innovative nanomaterials, CNPs could be utilized both as nontoxic drug delivery system and bioimaging. We foresee a great future for CNPs in cancer diagnostic and therapy.

Journal ArticleDOI
TL;DR: A novel integrated discovery platform has been used to synthesize and biologically assay a series of xanthine-derived dipeptidyl peptidase 4 (DPP4) antagonists, demonstrating rapid iterative structure-activity relationship generation.
Abstract: A novel integrated discovery platform has been used to synthesize and biologically assay a series of xanthine-derived dipeptidyl peptidase 4 (DPP4) antagonists. Design, synthesis, purification, quantitation, dilution, and bioassay have all been fully integrated to allow continuous automated operation. The system has been validated against a set of known DPP4 inhibitors and shown to give excellent correlation between traditional medicinal chemistry generated biological data and platform data. Each iterative loop of synthesis through biological assay took two hours in total, demonstrating rapid iterative structure–activity relationship generation.

Journal ArticleDOI
TL;DR: The biphenylic compound magnolol provides a simple novel lead structure for the development of agonists for CB receptors and antagonists for the related GPR55.
Abstract: The bark of Magnolia officinalis is used in Asian traditional medicine for the treatment of anxiety, sleeping disorders, and allergic diseases. We found that the extract and its main bioactive constituents, magnolol and honokiol, can activate cannabinoid (CB) receptors. In cAMP accumulation studies, magnolol behaved as a partial agonist (EC50 = 3.28 μM) with selectivity for the CB2 subtype, while honokiol was less potent showing full agonistic activity at CB1 and antagonistic properties at CB2. We subsequently synthesized the major metabolites of magnolol and found that tetrahydromagnolol (7) was 19-fold more potent than magnolol (EC50 CB2 = 0.170 μM) exhibiting high selectivity versus CB1. Additionally, 7 behaved as an antagonist at GPR55, a CB-related orphan receptor (KB = 13.3 μM, β-arrestin translocation assay). Magnolol and its metabolites may contribute to the biological activities of Magnolia extract via the observed mechanisms of action. Furthermore, the biphenylic compound magnolol provides a sim...

Journal ArticleDOI
TL;DR: Modifications of the bis-indole included polar or acidic functionalities at positions 5′ and 6′ and a bromine or a trifluoromethyl group at position 7, affording analogues that possess high activity and pronounced specificity.
Abstract: DYRK kinases are involved in alternative pre-mRNA splicing as well as in neuropathological states such as Alzheimer's disease and Down syndrome. In this study, we present the design, synthesis, and biological evaluation of indirubins as DYRK inhibitors with enhanced selectivity. Modifications of the bis-indole included polar or acidic functionalities at positions 5′ and 6′ and a bromine or a trifluoromethyl group at position 7, affording analogues that possess high activity and pronounced specificity. Compound 6i carrying a 5′-carboxylate moiety demonstrated the best inhibitory profile. A novel inverse binding mode, which forms the basis for the improved selectivity, was suggested by molecular modeling and confirmed by determining the crystal structure of DYRK2 in complex with 6i. Structure–activity relationships were further established, including a thermodynamic analysis of binding site water molecules, offering a structural explanation for the selective DYRK inhibition.