scispace - formally typeset
Search or ask a question
Institution

Sanford-Burnham Institute for Medical Research

NonprofitLa Jolla, California, United States
About: Sanford-Burnham Institute for Medical Research is a nonprofit organization based out in La Jolla, California, United States. It is known for research contribution in the topics: Apoptosis & Signal transduction. The organization has 2957 authors who have published 5568 publications receiving 530025 citations. The organization is also known as: La Jolla Cancer Research Foundation & Burnham Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A fully automated service for annotating bacterial and archaeal genomes that identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user.
Abstract: The number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them. We describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment. The service normally makes the annotated genome available within 12–24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service. By providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes.

9,397 citations

Journal ArticleDOI
TL;DR: Cd-hit-2d compares two protein datasets and reports similar matches between them; cd- Hit-est clusters a DNA/RNA sequence database and cd- hit-est-2D compares two nucleotide datasets.
Abstract: Motivation: In 2001 and 2002, we published two papers (Bioinformatics, 17, 282--283, Bioinformatics, 18, 77--82) describing an ultrafast protein sequence clustering program called cd-hit. This program can efficiently cluster a huge protein database with millions of sequences. However, the applications of the underlying algorithm are not limited to only protein sequences clustering, here we present several new programs using the same algorithm including cd-hit-2d, cd-hit-est and cd-hit-est-2d. Cd-hit-2d compares two protein datasets and reports similar matches between them; cd-hit-est clusters a DNA/RNA sequence database and cd-hit-est-2d compares two nucleotide datasets. All these programs can handle huge datasets with millions of sequences and can be hundreds of times faster than methods based on the popular sequence comparison and database search tools, such as BLAST. Availability: http://cd-hit.org Contact: [email protected]

8,306 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
13 Nov 1998-Science
TL;DR: In this paper, the kinase Akt and p21-Ras, an Akt activator, induced phosphorylation of pro-caspase-9 (pro-Casp9) in cells.
Abstract: Caspases are intracellular proteases that function as initiators and effectors of apoptosis. The kinase Akt and p21-Ras, an Akt activator, induced phosphorylation of pro-caspase-9 (pro-Casp9) in cells. Cytochrome c-induced proteolytic processing of pro-Casp9 was defective in cytosolic extracts from cells expressing either active Ras or Akt. Akt phosphorylated recombinant Casp9 in vitro on serine-196 and inhibited its protease activity. Mutant pro-Casp9(Ser196Ala) was resistant to Akt-mediated phosphorylation and inhibition in vitro and in cells, resulting in Akt-resistant induction of apoptosis. Thus, caspases can be directly regulated by protein phosphorylation.

3,280 citations

Journal ArticleDOI
02 Jun 2005-Nature
TL;DR: Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation.
Abstract: Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.

3,279 citations


Authors

Showing all 2960 results

NameH-indexPapersCitations
Michael Karin236704226485
John C. Reed190891164382
Erkki Ruoslahti159600101072
Randal J. Kaufman14049179527
Stuart A. Lipton13448871297
Jie Liu131153168891
Han Zhang13097058863
Robert Edwards12177574552
Michael Andreeff11795954734
Guy S. Salvesen11633775598
Thomas J. Kipps11474863240
Joseph M. Connors10246663941
Dietmar Vestweber10229830638
Robert G. Maki10041639234
Bret H. Goodpaster9428137874
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

95% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

National Institutes of Health
297.8K papers, 21.3M citations

95% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20222
20214
202010
20197
201817