scispace - formally typeset
Search or ask a question

Showing papers in "Biological Invasions in 2017"


Journal ArticleDOI
TL;DR: The papers in this special issue of Biological Invasions show that patterns and processes of urban invasions differ in many ways from invasions in other contexts, and that managing invasive species in cities poses unique and increasingly complex challenges.
Abstract: Although urban ecosystems are hotspots for biological invasions, the field of invasion science has given scant attention to invasion dynamics and the challenges facing managers in towns and cities. This paper provides an introduction to the growing challenges of understanding and managing invasive species in urban systems, and the context for a special issue of Biological Invasions, comprising 17 papers, that arose from a workshop on “Non-native species in urban environments: patterns, processes, impacts and challenges” held in Stellenbosch, South Africa, in November 2016. Contributions explore the following key questions: Are patterns and processes of urban invasions different from invasions in other contexts? Why is it important to manage non-native species in urban ecosystems? What are the special management needs in an urban context? How can we bridge the gaps between science, management, and policy with regards to biological invasions in urban ecosystems? The papers in this special issue show that patterns and processes of urban invasions differ in many ways from invasions in other contexts, and that managing invasive species in cities poses unique and increasingly complex challenges. Progress in urban invasion science requires further work to: (1) address key limitations that hinder our understanding of invasion dynamics in cities; (2) clarify whether fundamental concepts in the field of invasion science are appropriate for urban ecosystems; (3) integrate insights from invasion science with those from the burgeoning literature on the “Anthropocene biosphere”, novel ecosystems, social–ecological systems, human–wildlife conflicts, urban green infrastructure, urban planning and design, and ecosystem services/disservices.

185 citations


Journal ArticleDOI
TL;DR: An in-depth review of the traits of successful invasive forest insects and the ecological processes involved in insect invasions across the universal invasion phases (transport and arrival, establishment, spread and impacts).
Abstract: Forests in virtually all regions of the world are being affected by invasions of non-native insects. We conducted an in-depth review of the traits of successful invasive forest insects and the ecological processes involved in insect invasions across the universal invasion phases (transport and arrival, establishment, spread and impacts). Most forest insect invasions are accidental consequences of international trade. The dominant invasion ‘pathways’ are live plant imports, shipment of solid wood packaging material, “hitchhiking” on inanimate objects, and intentional introductions of biological control agents. Invading insects exhibit a variety of life histories and include herbivores, detritivores, predators and parasitoids. Herbivores are considered the most damaging and include wood-borers, sap-feeders, foliage-feeders and seed eaters. Most non-native herbivorous forest insects apparently cause little noticeable damage but some species have profoundly altered the composition and ecological functioning of forests. In some cases, non-native herbivorous insects have virtually eliminated their hosts, resulting in major changes in forest composition and ecosystem processes. Invasive predators (e.g., wasps and ants) can have major effects on forest communities. Some parasitoids have caused the decline of native hosts. Key ecological factors during the successive invasion phases are illustrated. Escape from natural enemies explains some of the extreme impacts of forest herbivores but in other cases, severe impacts result from a lack of host defenses due to a lack of evolutionary exposure. Many aspects of forest insect invasions remain poorly understood including indirect impacts via apparent competition and facilitation of other invaders, which are often cryptic and not well studied.

153 citations


Journal ArticleDOI
TL;DR: Management of invasions in forests includes prevention of arrival, eradication of nascent populations, biological control, selection for resistance in host trees, and the use of cultural practices to minimize invader impacts.
Abstract: Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of microorganisms such as fungi, oomycetes, bacteria and viruses. These species have diverse ecological roles including primary producers, herbivores, predators, animal pathogens, plant pathogens, decomposers, pollinators and other mutualists. Although most non-native species have negligible effects on forests, a few have profound and often cascading impacts. These impacts include alteration of tree species composition, changes in forest succession, declines in biological diversity, and alteration of nutrient, carbon and water cycles. Many of these result from competition with native species but also trophic influences that may result in major changes in food web structure. Naturally regenerating forests around the world have been substantially altered by invading species but planted forests also are at risk. Non-native tree species are widely planted in many parts of the world for production of wood and fibre, and are chosen because of their frequently exceptional growth in their new environment. This greater growth is due, in part, to escape from herbivores and pathogens that exist in their native ranges. Over time, some pest species can “catch-up” with their hosts, leading to subsequent declines in forest productivity. Other impacts result when native herbivores or pathogens adapt to exotic trees or when novel associations form between pathogens and vectors. Additionally, planted non-native trees are sometimes invasive and can have substantial adverse effects on adjacent natural areas. Management of invasions in forests includes prevention of arrival, eradication of nascent populations, biological control, selection for resistance in host trees, and the use of cultural practices (silviculture and restoration) to minimize invader impacts. In the future, the worlds’ forests are likely to be subject to increasing numbers of invasions, and effective management will require greater international cooperation and interdisciplinary integration.

139 citations


Journal ArticleDOI
TL;DR: Future research should continue evaluation and design of control strategies across the biosecurity continuum and across species to enhance cost-effectiveness, better incorporate uncertainty into policy design, increase focus on incentives and behavioral tools to influence private behaviors that affect invasion spread, and incorporate invasive species consideration within broader systems-focused science.
Abstract: This article examines the use of economic analysis to inform bioinvasion management, with particular focus on forest resources. Economics is key for understanding invasion processes, impacts, and decision-making. Biological invasions are driven by and affect economic activities at multiple scales and stages of an invasion. Bioeconomic modeling seeks to inform how resources can be optimally allocated across invasion management activities—including prevention, surveillance programs for early detection and management, and controlling invasion populations and spread—to minimize the long-term costs and damages. Economic analysis facilitates understanding of decisions by public and private decision-makers, gaps between these, and the design of policies to achieve socially desirable outcomes. Private decision-makers may undercontrol invasions relative to socially optimal levels, because they generally account for their own costs and benefits of control but less often for broader ecosystem impacts or future spread across the landscape. Economic analysis considers approaches for increasing private invasion management and evaluates feedbacks between ecological and economic systems that can affect policy outcomes. Future research should continue evaluation and design of control strategies across the biosecurity continuum and across species to enhance cost-effectiveness, better incorporate uncertainty into policy design, increase focus on incentives and behavioral tools to influence private behaviors that affect invasion spread, and incorporate invasive species consideration within broader systems-focused science. In addition, challenges in valuing biodiversity and ecosystem service impacts and the costs and effectiveness of control measures are key data gaps. Greater collaboration between decision-makers and researchers will facilitate development and communication of usable economic research.

128 citations


Journal ArticleDOI
TL;DR: Invasive alien species are a major problem for managers of protected areas (PAs) worldwide as mentioned in this paper, and the status and macro-ecological patterns of alien plant invasions, threats that invasive alien plants pose and the impacts detected to date, current focus of invasion science in PAs, and research priorities for advancing science-based management and policy.
Abstract: Invasive alien species are a major problem for managers of protected areas (PAs) worldwide. Until the 1980s biological invasions were widely considered to be largely confined to anthropogenically disturbed sites and the widespread disruption of ecosystems in PAs by invasive species was not globally perceived as a major threat. A working group of the SCOPE program on biological invasions in the 1980s showed that PAs are not spared from major disruptive effects of invasions. Early research focused on descriptive studies of the extent to which PAs were invaded. More recent research explored drivers of invasion, and in the last decade much work has focused on understanding the impacts of invasions. We review the current understanding of alien plant invasions in PAs, focusing on four themes: (1) the status and macroecological patterns of alien plant invasions; (2) the threats that invasive alien plants (IAPs) pose and the impacts detected to date; (3) the current focus of invasion science in PAs; and (4) research priorities for advancing science-based management and policy. Of a sample of 59 widespread IAP species from a representative sample of 135 PAs globally, trees make up the largest proportion (32%), followed by perennial herbs (17%) and shrubs (15%). About 1857 papers have been published on alien species in PAs; 45% have focused on alien plants. Some textbook examples of impacts by IAPs originate from PAs, illustrating the severe threat to the core function of PAs. Impacts have been quantified at the species and community levels through the displacement and alteration of habitats. In some cases, native species abundance, diversity and estimated species richness have been altered, but reversed following control. At an ecosystem level, invasive plants have radically altered fire regimes in several PAs, in some cases causing regime shifts and transforming woodlands or savannas to grasslands. Invasions have also had a major impact on nutrient cycles. Protected areas are performing an increasingly important part of the global response to stem the rate of environmental change. Despite this, integrated efforts involving science, management and policy that are sufficiently resourced to generate insights on the status and dynamics of IAPs in PAs are insufficient or even lacking. Such efforts are needed to pave the way for monitoring trends, revising legislation and policies, and improving management interventions to reduce the extent and magnitude of impacts of invasive plants in PAs. While policy instruments to support management of non-native species date back to the 1930s, there has been a substantial increase in legislative support and general awareness since the early 2000s. Still, opportunities to improve research for PAs need to be created. Towards this goal, the establishment of a global PA research network could provide a unique vehicle to explore questions across species or functional groups and systems, at a scale currently beyond existing abilities. Developing an integrated global database with standardized, quantitative information could form part of such a networks function.

126 citations


Journal ArticleDOI
TL;DR: This review aims to answer the questions most commonly asked regarding CBC against insect pests, with particular emphasis on tree pests.
Abstract: Classical biological control (CBC) is the introduction of a natural enemy of exotic origin to control a pest, usually also exotic, aiming at permanent control of the pest. CBC has been carried out widely over a variety of target organisms, but most commonly against insects, using parasitoids and predators and, occasionally, pathogens. Until 2010, 6158 introductions of parasitoids and predators were made against 588 insect pests, leading to the control of 172 pests. About 55% of these introductions were made against pests of woody plants. Establishment rates of natural enemies and success rates were higher in CBC projects targeting pests of woody plants than other pests. This review aims to answer the questions most commonly asked regarding CBC against insect pests, with particular emphasis on tree pests. The topics covered include, among others: variations in rates of successes among different systems, different target insect groups and different agents; temporal trends in CBC practices and successes; economic and environmental benefits; risks and ways to mitigate the risks; CBC against native pests; accidental successes through the adoption of the invasive pests by native natural enemies or accidentally introduced agents; and prospects and constraints for the practice of CBC in the future. Questions are answered based on the analysis of two databases, the BIOCAT2010 database of introductions of insect biological control agents for the CBC of insect pests, and a database of introductions of entomopathogens against insect pests.

118 citations


Journal ArticleDOI
TL;DR: Findings indicate that differences in the germination behavior of alien and native species contribute to the invasiveness of many species, although evidence under natural conditions is needed.
Abstract: The germination behavior of a plant influences its fitness, persistence, and evolutionary potential, as well as its biotic environment. This can have major effects on the invasive potential of a species. We review the findings of four types of experimental studies comparing basic germination characteristics of invasive versus non-invasive congeners, in their non-native or native distribution range; invasive alien versus native species; and invasive species in their native versus non-native distribution range. Early and/or rapid germination is typical of invasive species rather than their non-invasive congeners, and represents a pre-adaptation from which many invasive and naturalized species benefit. It also occurs more often in invasive than native species, suggesting that competition mitigation or avoidance in the early stages of a plant’s life, via the exploitation of vacant germination niches, might be more useful than a superior competitive ability in novel environments. This is further supported by a tendency of invasive species to germinate earlier and/or faster and have broader germination cues in their non-native than in their native range. It is also supported by broader germination requirements being reported for invasive species than their non-invasive or native congeners. In contrast, high percentage germination is not a consistent predictor of invasiveness, suggesting that the incorporation of a larger fraction of seed production into the soil seed bank rather than high germination is a better (or safer) strategy in novel environments. These patterns indicate that differences in the germination behavior of alien and native species contribute to the invasiveness of many species, although evidence under natural conditions is needed. The role of such differences in the establishment and spread of invasive species in novel environments and their long-term impact on community dynamics requires further study.

112 citations


Journal ArticleDOI
TL;DR: The history, pathways and vectors of the biological invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world are described, clear that these corals are fouling organisms strongly associated with oil and gas platforms worldwide which are thus primary vectors for new introductions.
Abstract: In this review, we describe the history, pathways and vectors of the biological invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world. In order to do so we consulted previous reports in the literature and also compiled new unpublished information on the distribution of the three species of Tubastraea which have been reported as non indigenous species, both within their native and non-native ranges and also on vectors, and where cryptogenic. We combine these data with historical aspects of marine vectors in order to get insights into how Tubastraea species have successfully spread around the world, established and invaded and where future studies would be best focused. T. coccinea and T. tagusensis are recognized as being highly invasive and are causing significant environmental, economic, and social impacts requiring management actions. The third species, T. micranthus so far only reported outside its native range on oil platforms, may have similar potential for negative impact. The vectors of introduction of Tubastraea may have changed throughout history and the biological invasion of these invasive corals may reflect changing practices, demands and legislation in shipping activities over the years. Today it is clear that these corals are fouling organisms strongly associated with oil and gas platforms worldwide which are thus primary vectors for new introductions.

105 citations


Journal ArticleDOI
TL;DR: It is shown that the available evidence supports the proposition that NIS benefit from urbanization, with NIS obtaining higher abundances and greater diversity in more urbanized habitats.
Abstract: Urban environments are often seen as unique or degraded habitats that both present hardships for some sensitive species and provide opportunities to others. Non-indigenous species (NIS) are commonly referenced in the latter group, and are comprised of species that can tolerate the unique conditions or capitalize on the opportunities found in urban environments. Moreover, these urban beneficiaries may be those that normally cannot overcome competitive interactions in intact native communities, but find opportunity to flourish in urban habitats. We ask the question: do NIS benefit from urbanization? We answer this question using three strategies. First, we explore the problem conceptually, using community assembly theory. Second, we perform a broad literature review. Finally, we analyze studies with sufficient information using a meta-analysis. We show that the available evidence supports the proposition that NIS benefit from urbanization, with NIS obtaining higher abundances and greater diversity in more urbanized habitats. There were only 43 studies that measured NIS abundance and diversity while adequately quantifying the degree of urbanization surrounding plots, and effect sizes (measured by Hedge’s D) reveal that NIS obtain higher abundances in more urbanized habitats, and especially for invertebrates. Despite the intense interest in NIS dynamics and impacts, we note a general dearth of robust studies that adequately quantify ‘urbanization’, and we end with a general call for more detailed research.

100 citations


Journal ArticleDOI
TL;DR: The ecology and management of Pinaceae invasions is reviewed and how restoration of invaded areas should be addressed is explored and how control interventions at early stages of invasion are focused.
Abstract: Fil: Nunez, Martin Andres. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina

100 citations


Journal ArticleDOI
TL;DR: The reflections here from some of the most advanced applied resistance programs, as well as some the unknowns and limitations of implementing a resistance program, will provide a guide to managers considering this approach.
Abstract: Tree species world-wide are under increasing threat from diseases and insects, many of which are non-native. The integrity of our natural, urban and plantation forest ecosystems, and the services they provide are seriously imperiled. Breeding programs that harness the natural genetic resistance within tree species can provide a durable solution to these threats. In many cases, genetic resistance offers the key to restoration of forests and may even prevent extinction of some tree species. The potential use of genetic resistance is often widely discussed, but the development of applied programs and use of resistant seed has only taken place in a relatively few species. The reflections here from some of the most advanced applied resistance programs, as well as some of the unknowns and limitations of implementing a resistance program will provide a guide to managers considering this approach. In any such program, there is a research component, a tree improvement component and a restoration and reforestation component. These three components, along with sustained management and public support, need to be linked for any genetic resistance program to be fully successful in facilitating the recovery of healthy forests. Other management activities and newly developing technologies may serve to complement genetic resistance or to expedite its development, but premature, over-emphasis on some of these may slow the operational program. An understanding of the level, frequency, durability and stability of resistance and its limitations are necessary to management planning.

Journal ArticleDOI
TL;DR: The results align with the view that increased public awareness might increase the public support for the management of invasive species, independent of taxonomic position and type of landscape.
Abstract: Management of invasive species often raises substantial conflicts of interest. Since such conflicts can hamper proposed management actions, managers, decision makers and researchers increasingly recognize the need to consider the social dimensions of invasive species management. In this exploratory study, we aimed (1) to explore whether species’ taxonomic position (i.e. animals vs. plants) and type of invaded landscape (i.e. urban vs. non-urban) might influence public perception about the management of invasive species, and (2) to assess the potential of public awareness to increase public support for invasive species management. We reviewed the scientific literature on the conflicts of interest around the management of alien species and administered two-phased questionnaires (before and after providing information on the target species and its management) to members of the public in South Africa and the UK (n = 240). Our review suggests that lack of public support for the management of invasive animals in both urban and non-urban areas derives mainly from moralistic value disagreements, while the management of invasive plants in non-urban areas mostly causes conflicts based on utilitarian value disagreements. Despite these general trends, conflicts are context dependent and can originate from a wide variety of different views. Notably, informing the public about the invasive status and negative impacts of the species targeted for management appeared to increase public support for the management actions. Therefore, our results align with the view that increased public awareness might increase the public support for the management of invasive species, independent of taxonomic position and type of landscape.

Journal ArticleDOI
TL;DR: It is advocated that functional responses can help achieve this across taxonomic and trophic groups, among habitats and contexts, and can hence help unify disparate research interests in invasion ecology.
Abstract: We contend that invasion ecology requires a universal, measurable trait of species and their interactions with resources that predicts key elements of invasibility and ecological impact; here, we advocate that functional responses can help achieve this across taxonomic and trophic groups, among habitats and contexts, and can hence help unify disparate research interests in invasion ecology.

Journal ArticleDOI
TL;DR: It is suggested that urban trees may be viewed as ‘sentinel plantings’ to help predict and prevent the invasion of new pests, and where introduced pests with the capacity to cause serious impacts in forest environments could potentially be detected during the initial stages of establishment.
Abstract: Urban trees have been increasingly appreciated for the many benefits they provide. As concentrated hubs of human-mediated movement, the urban landscape is, however, often the first point of contact for exotic pests including insects and plant pathogens. Consequently, urban trees can be important for accidentally introduced forest pests to become established and potentially invasive. Reductions in biodiversity and the potential for stressful conditions arising from anthropogenic disturbances can predispose these trees to pest attack, further increasing the likelihood of exotic forest pests becoming established and increasing in density. Once established in urban environments, dispersal of introduced pests can proceed to natural forest landscapes or planted forests. In addition to permanent long-term damage to natural ecosystems, the consequences of these invasions include costly attempts at eradication and post establishment management strategies. We discuss a range of ecological, economic and social impacts arising from these incursions and the importance of global biosecurity is highlighted as a crucially important barrier to pest invasions. Finally, we suggest that urban trees may be viewed as ‘sentinel plantings’. In particular, botanical gardens and arboreta frequently house large collections of exotic plantings, providing a unique opportunity to help predict and prevent the invasion of new pests, and where introduced pests with the capacity to cause serious impacts in forest environments could potentially be detected during the initial stages of establishment. Such early detection offers the only realistic prospect of eradication, thereby reducing damaging ecological impacts and long term management costs.

Journal ArticleDOI
TL;DR: The Non-Native Risk Management scheme is one of the first INNS risk management schemes that can be used with existing risk assessments to prioritise INNS eradication in any area.
Abstract: Robust tools are needed to prioritise the management of invasive non-native species (INNS). Risk assessment is commonly used to prioritise INNS, but fails to take into account the feasibility of management. Risk management provides a structured evaluation of management options, but has received little attention to date. We present a risk management scheme to assess the feasibility of eradicating INNS that can be used, in conjunction with existing risk assessment schemes, to support prioritisation. The Non-Native Risk Management scheme (NNRM) can be applied to any predefined area and any taxa. It uses semi-quantitative response and confidence scores to assess seven key criteria: Effectiveness, Practicality, Cost, Impact, Acceptability, Window of opportunity and Likelihood of re-invasion. Scores are elicited using expert judgement, supported by available evidence, and consensus-building methods. We applied the NNRM to forty-one INNS that threaten Great Britain (GB). Thirty-three experts provided scores, with overall feasibility of eradication assessed as ‘very high’ (8 species), ‘high’ (6), ‘medium’ (8), ‘low’ (10) and ‘very low’ (9). The feasibility of eradicating terrestrial species was higher than aquatic species. Lotic freshwater and marine species scored particularly low. Combining risk management and existing risk assessment scores identified six established species as priorities for eradication. A further six species that are not yet established were identified as priorities for eradication on arrival as part of contingency planning. The NNRM is one of the first INNS risk management schemes that can be used with existing risk assessments to prioritise INNS eradication in any area.

Journal ArticleDOI
TL;DR: A global database of cities with more than one million inhabitants that data had on alien species occurrence was compiled and the most prominent pathways of introduction and vectors of spread of alien species in these cities were identified.
Abstract: Globalisation has resulted in the movement of organisms outside their natural range, often with negative ecological and economic consequences. As cities are hubs of anthropogenic activities, with both highly transformed and disturbed environments, these areas are often the first point of entry for alien species. We compiled a global database of cities with more than one million inhabitants that data had on alien species occurrence. We then identified the most prominent pathways of introduction and vectors of spread of alien species in these cities. Most species were intentionally introduced to cities and were released or escaped from confinement. The majority of alien species then spread within cities through natural means (primarily unaided dispersal). Pathway prominence varied across the taxonomic groups of alien species: the most prominent pathway for plants and vertebrates was the escape pathway; for invertebrates the stowaway and contaminant pathways were most likely to facilitate introductions. For some organisms, pathway prominence varied with the geographical and climatic characteristics of the city. The characteristics of the cities also influenced the prominence of vectors of spread for alien species. Preventing the natural spread of alien species within cities, and into adjacent natural environments will be, at best, difficult. To prevent invasions, both the intentional and unintentional introduction of potentially harmful alien species to cities must be prevented. The pathways of introduction and vectors of spread identified here should be prioritised for management.

Journal ArticleDOI
TL;DR: The aim of this study was to establish the current and future potential distribution of three invasive plant taxa, Egeria densa, Myriophyllum aquaticum and Ludwigia spp.
Abstract: Inland aquatic ecosystems are vulnerable to both climate change and biological invasion at broad spatial scales. The aim of this study was to establish the current and future potential distribution of three invasive plant taxa, Egeria densa, Myriophyllum aquaticum and Ludwigia spp., in their native and exotic ranges. We used species distribution models (SDMs), with nine different algorithms and three global circulation models, and we restricted the suitability maps to cells containing aquatic ecosystems. The current bioclimatic range of the taxa was predicted to represent 6.6–12.3% of their suitable habitats at global scale, with a lot of variations between continents. In Europe and North America, their invasive ranges are predicted to increase up to two fold by 2070 with the highest gas emission scenario. Suitable new areas will mainly be located to the north of their current range. In other continents where they are exotic and in their native range (South America), the surface areas of suitable locations are predicted to decrease with climate change, especially for Ludwigia spp. in South America (down to −55% by 2070 with RCP 8.5 scenario). This study allows to identify areas vulnerable to ongoing invasions by aquatic plant species and thus could help the prioritisation of monitoring and management, as well as contribute to the public awareness regarding biological invasions.

Journal ArticleDOI
TL;DR: It is emphasized that biological invaders have the potential for large-scale and long-term impacts on forest processes, and consideration of these impacts in an aboveground-belowground context will enable better prediction of future responses of forests to invaders and their management as well as of restoration efforts.
Abstract: Forest ecosystems world-wide are being subjected to invasion by organisms representing all domains of life. Here we use a combined aboveground-belowground approach to provide a conceptual framework for assessing how forests respond to biological invasions. We first address mechanisms by which invasive plants and aboveground and belowground consumers impact on forests, and highlight that although we have a growing understanding of the determinants of the effects of invasive plants, for invasive consumers we have yet to move from a series of iconic case studies to the development of general principles. We also address the effects of invasive biota in the context of the drivers of invasion, co-invasion and invasional meltdown, the issue of simultaneous species gains and losses, and forest restoration and recovery post-invasion. We then highlight areas that would benefit from further work, particularly regarding underlying mechanisms, determinants of context-dependency of invader effects, and linkages between causes and consequences of invasion. In concluding, we emphasize that biological invaders have the potential for large-scale and long-term impacts on forest processes, and consideration of these impacts in an aboveground-belowground context will enable better prediction of future responses of forests to invaders and their management as well as of restoration efforts.

Journal ArticleDOI
TL;DR: It is proposed that a single founding event is responsible for the laurel wilt epidemic in the United States and that numerous native shrub and tree species in the Lauraceae are susceptible and threatened in the Western Hemisphere.
Abstract: Laurel wilt is an extraordinarily destructive exotic tree disease in the southeastern United States that involves new-encounter hosts in the Lauraceae, an introduced vector (Xyleborus glabratus) and pathogen symbiont (Raffaelea lauricola). USDA Forest Service Forest Inventory and Analysis data were used to estimate that over 300 million trees of redbay (Persea borbonia sensu lato) have succumbed to the disease since the early 2000s (ca 1/3 of the pre-invasion population). In addition, numerous native shrub and tree species in the family are susceptible and threatened in the Western Hemisphere. Genetic markers were used to test the hypothesis that the vector and pathogen entered North America as a single introduction. With a portion of the cytochrome oxidase I gene, a single X. glabratus haplotype was detected in the USA. Similarly, Amplified Fragment Length Polymorphisms indicated that 95% (54 of 57) of the isolates of R. lauricola that were examined were of a single clonal genotype; only minor variation was detected in three polymorphic isolates. Similar levels of disease developed after swamp bay (P. palustris) was inoculated with each of the four genotypes of R. lauricola. It is proposed that a single founding event is responsible for the laurel wilt epidemic in the United States.

Journal ArticleDOI
TL;DR: The roles that alien plants play in providing urban ES and ecosystem disservices (EDS) globally are reviewed, and the main ES and EDS associated with alien plants are identified, and key species involved are highlighted.
Abstract: Urban areas have unique assemblages of species which are governed by novel ecological processes. People living in these environments have specific needs and demands in terms of ecosystem services (ES). Urban ecosystems are transformed in many ways by human activities and their floras comprise a high proportion of alien plant species, many of which were intentionally introduced to provide, augment or restore ES. Urban environments also have novel disturbance regimes and provide colonization sites for the establishment, dispersal and proliferation of alien plant species; such conditions often generate biological invasions which may cause marked changes to ES. We review the roles that alien plants play in providing urban ES and ecosystem disservices (EDS) globally. We identify the main ES and EDS associated with alien plants, and highlight the key species involved. A literature search revealed 335 papers, representing studies in 58 cities or urban areas in 27 countries. These studies recorded 337 alien plant species, contributing to 39 different ES and 27 EDS–310 species were recorded as contributing to ES and 53 species to EDS. A small number of alien plant taxa were frequently recorded as providing multiple ES in many urban ecosystems; the 10 most recorded species accounted for 21% of the ES recorded. Some of these species also result in significant EDS; three species accounted for 30% of the EDS recorded. Cultural services (notably aesthetics) are the most reported ES provided by alien plants in urban areas of developed countries, while provisioning services (notably food production) are most reported in developing countries. The most commonly studied EDS provided by alien plants is the impact on human health (notably allergic reactions). Eighty percent of studies on alien plants and ES and EDS have been done in developed countries. To elucidate the full range of effects of alien plants, more work is needed in developing countries. Urban planners and managers need to be mindful of both the positive and negative impacts of alien plant species to maximise the provision of ES.

Journal ArticleDOI
TL;DR: The current state of genetic pest management is reviewed and, using an established set of eradication criteria, the characteristics which make GPM technologies suitable for application against invasive pests are discussed.
Abstract: Invasive species remain one of the greatest threats to global biodiversity. Their control would be enhanced through the development of more effective and sustainable pest management strategies. Recently, a novel form of genetic pest management (GPM) has been developed in which the mating behaviour of insect pests is exploited to introduce genetically engineered DNA sequences into wild conspecific populations. These ‘transgenes’ work in one or more ways to reduce the damage caused by a particular pest, for example reducing its density, or its ability to vector disease. Although currently being developed for use against economically important insect pests, these technologies would be highly appropriate for application against invasive species that threaten biodiversity. Importantly, these technologies have begun to advance in scope beyond insects to vertebrates, which include some of the world’s worst invasives. Here we review the current state of this rapidly progressing field and, using an established set of eradication criteria, discuss the characteristics which make GPM technologies suitable for application against invasive pests.

Journal ArticleDOI
TL;DR: Negative impacts of Opuntia stricta included reductions in native plant populations, rangeland condition, human health, and mobility of humans and animals, and management interventions are needed to reduce negative impacts.
Abstract: Many cactus species have been introduced around the world and have subsequently become major invaders, inducing social and ecological costs. We recorded the distribution of Opuntia stricta in eastern Africa, and conducted 200 household interviews using semi-structured questionnaires to assess local perceptions of O. stricta in Laikipia County, Kenya. Opuntia stricta was widespread and abundant in parts of Kenya, Tanzania and Ethiopia and present at low densities in Uganda. In Laikipia County, pastoralists identified that O. stricta had been present for more than 10 years, and were of the opinion that it was still spreading and increasing in density. Two-thirds of respondents estimated that 50–75% of valuable grazing land had been invaded, and all felt that it contributed to the ill-health and death of livestock. Other negative impacts included reductions in native plant populations, rangeland condition, human health, and mobility of humans and animals. These negative impacts resulted in economic losses of US$ 500–1000 per household per year for 48% of households. Only 20% of respondents reported actively managing O. stricta, yet all respondents believed a reduction in the abundance of this weed would improve well-being. Management interventions are needed to reduce negative impacts.

Journal ArticleDOI
TL;DR: It is suggested that hyperspectral remote sensing data have the potential to provide reliable information about the degree of bryophyte invasion, and thus provide an alternative to traditional field mapping approaches over large areas.
Abstract: Reliable distribution maps are crucial for the management of invasive plant species. An alternative to traditional field surveys is the use of remote sensing data, which allows coverage of large areas. However, most remote sensing studies on invasive plant species focus on mapping large stands of easily detectable study species. In this study, we used hyperspectral remote sensing data in combination with field data to derive a distribution map of an invasive bryophyte species, Campylopus introflexus, on the island of Sylt in Northern Germany. We collected plant cover data on 57 plots to calibrate the model and presence/absence data of C. introflexus on another 150 plots for independent validation. We simultaneously acquired airborne hyperspectral (APEX) images during summer 2014, providing 285 spectral bands. We used a Maxent modelling approach to map the distribution of C. introflexus. Although C. introflexus is a small and inconspicuous species, we were able to map its distribution with an overall accuracy of 75 %. Reducing the sampling effort from 57 to 7 plots, our models performed fairly well until sampling effort dropped below 12 plots. The model predicts that C. introflexus is present in about one quarter of the pixels in our study area. The highest percentage of C. introflexus is predicted in the dune grassland. Our findings suggest that hyperspectral remote sensing data have the potential to provide reliable information about the degree of bryophyte invasion, and thus provide an alternative to traditional field mapping approaches over large areas.

Journal ArticleDOI
TL;DR: This work combines the relative per capita effects and relative field abundances of invader as compared to native species into a new metric, “Relative Impact Potential” (RIP), and test whether this metric can reliably predict high impact invaders.
Abstract: Invasive species management requires allocation of limited resources towards the proactive mitigation of those species that could elicit the highest ecological impacts. However, we lack predictive capacity with respect to the identities and degree of ecological impacts of invasive species. Here, we combine the relative per capita effects and relative field abundances of invader as compared to native species into a new metric, “Relative Impact Potential” (RIP), and test whether this metric can reliably predict high impact invaders. This metric tests the impact of invaders relative to the baseline impacts of natives on the broader ecological community. We first derived the functional responses (i.e. per capita effects) of two ecologically damaging invasive fish species in Europe, the Ponto-Caspian round goby (Neogobius melanostomus) and Asian topmouth gudgeon (Pseudorasbora parva), and their native trophic analogues, the bullhead (Cottus gobio; also C. bairdi) and bitterling (Rhodeus amarus), towards several prey species. This establishes the existence and relative strengths of the predator–prey relationships. Then, we derived ecologically comparable field abundance estimates of the invader and native fish from surveys and literature. This establishes the multipliers for the above per capita effects. Despite both predators having known severe detrimental field impacts, their functional responses alone were of modest predictive power in this regard; however, incorporation of their abundances relative to natives into the RIP metric gave high predictive power. We present invader/native RIP biplots that provide an intuitive visualisation of comparisons among the invasive and native species, reflecting the known broad ecological impacts of the invaders. Thus, we provide a mechanistic understanding of invasive species impacts and a predictive tool for use by practitioners, for example, in risk assessments.

Journal ArticleDOI
TL;DR: The Baltic Sea cannot be considered as a uniform waterbody in terms of the established introduced species and at least two major regions with differing hydrographic conditions and introduction pathways can be clearly distinguished.
Abstract: Coastal and regional sea ecosystems suffer from several human-induced stressors, including human mediated bioinvasions. The Baltic Sea is generally considered to be susceptible to invasions by non-indigenous species (NIS). Out of the total of 132 NIS and cryptogenic species recorded, 59% are currently established in at least one country surrounding the Baltic Sea. On average, each country currently hosts 27 such species with 15% of the established species being found in at least 50% of the countries. Benthic macroinvertebrates dominate, both among those recorded (48%) and established (59%) species. Shipping, deliberate stocking and natural spread of NIS previously introduced to the North Sea are the main introduction pathways, with considerable dynamics over time. Amongst the pathways responsible for the currently established species, shipping and natural spread strongly dominate. Substantial uncertainty in the information on introduction pathways (except for deliberate releases) hampers detailed analyses and poses major challenges for management. Spatio-temporal variability in the invasion dynamics reflects both the spatial differences in the main hydrographic conditions of the Baltic Sea as well as the availability of introduction pathways. We conclude that the Baltic Sea cannot be considered as a uniform waterbody in terms of the established introduced species and at least two major regions with differing hydrographic conditions and introduction pathways can be clearly distinguished. Due to the importance of natural spread of NIS from the North Sea, regional cooperation in bioinvasion management should be enhanced in the future.

Journal ArticleDOI
TL;DR: The results suggested that ideal criteria for environmental variable selection vary among algorithms, as different algorithms showed different sensitivities to spatial dimensionality and correlation.
Abstract: Transferability is key to many of the most novel and interesting applications of ecological niche models, such that maximizing predictive power of model transfers is crucial Here, we explored consensus methods as a means of reducing uncertainty and improving model transferability in anticipating the potential distribution of an invasive moth (Hyphantria cunea) Individual native-range niche models were calibrated using seven modelling algorithms and four environmental datasets, representing different degrees of dimensionality, spatial correlation, and ecological relevance, and showing different degrees of climate niche expansion Four consensus methods were used to combine individual niche models; we assessed transferability of consensus models and the individual models used to generate them The results suggested that ideal criteria for environmental variable selection vary among algorithms, as different algorithms showed different sensitivities to spatial dimensionality and correlation Consensus models reflected the central tendency of individual models, and reduced uncertainty by consolidating consistency across individual models, but did not outperform individual models The question of whether interpolation accuracy comes at the expense of transferability suggests caution in planning methodologies for processing niche models to predict invasive potential These explorations outline approaches by which to reduce uncertainty and improve niche model transferability with vital implications for ensemble forecasting

Journal ArticleDOI
TL;DR: The need for management plans to incorporate lionfish populations below the depth limit of recreational diving in order to address all aspects of the local population and maximise the effectiveness of control efforts is highlighted.
Abstract: The detrimental effects of invasive lionfishes (Pterois volitans and Pterois miles) on western Atlantic shallow reefs are well documented, including declines in coral cover and native fish populations, with disproportionate predation on critically endangered reef fish in some locations. Yet despite individuals reaching depths >100 m, the role of mesophotic coral ecosystems (MCEs; reefs 30–150 m) in lionfish ecology has not been addressed. With lionfish control programs in most invaded locations limited to 30 m by diving restrictions, understanding the role of MCEs in lionfish distributions remains a critical knowledge gap potentially hindering conservation management. Here we synthesise unpublished and previously published studies of lionfish abundance and body length at paired shallow reef (0–30 m) and MCE sites in 63 locations in seven western Atlantic countries and eight sites in three Indo-Pacific countries where lionfish are native. Lionfish were found at similar abundances across the depth gradient from shallow to adjacent MCEs, with no difference between invaded and native sites. Of the five invaded countries where length data were available three had larger lionfish on mesophotic than shallow reefs, one showed no significant difference, while the fifth represented a recently invaded site. This suggests at least some mesophotic populations may represent extensions of natural ontogenetic migrations. Interestingly, despite their shallow focus, in many cases culling programs did not appear to alter abundance between depths. In general, we identify widespread invasive lionfish populations on MCE that could be responsible for maintaining high densities of lionfish recruits despite local shallow-biased control programs. This study highlights the need for management plans to incorporate lionfish populations below the depth limit of recreational diving in order to address all aspects of the local population and maximise the effectiveness of control efforts.

Journal ArticleDOI
TL;DR: Ten scenarios are developed for how introductions to small towns, agricultural and natural areas can lead to landscape-scale invasions and found no relationships between the alien plant species richness in towns and climatic variables or with levels of anthropogenic disturbances.
Abstract: Alien species are often first introduced to urban areas, so it is unsurprising that towns and cities are often hotspots for invasions. However, while large cities are usually the first sites of introduction, small towns are more numerous and have a greater chance of launching invasions into natural areas as they have proportionally larger interfaces with their surroundings. In this paper we develop a set of scenarios as hypotheses to explore the role of small towns in facilitating within-country dispersal of alien plants. In particular, we developed ten scenarios for how introductions to small towns, agricultural and natural areas can lead to landscape-scale invasions. We tested a part of these scenarios using a case study of a highly invaded region in South Africa (the Berg River catchment in the Western Cape). We specifically investigated the main plant invasion routes between 12 small towns and their surrounding agricultural and natural areas. This was accomplished by conducting urban-specific alien plant surveys in towns, then comparing these results to regional databases of naturalized and/or invasive plants. Many of the alien plants found in urban areas were listed as invasive or naturalized in the catchment (over 30% of the total alien species pool). Despite marked environmental gradients across the study area, we found no relationships between the alien plant species richness in towns and climatic variables or with levels of anthropogenic disturbances. All towns hosted large numbers of invasive plant species and nearly half of the alien species found in towns were naturalized or invasive in surrounding areas. The likelihood of alien plants being naturalized or invasive outside urban areas increased in proportion to their local abundance in towns and if they were tall and woody. Ornamental horticulture was the main reason for introduction of these alien species (69%). Small towns can and do harbour significant populations of plant taxa that are able to spread to surrounding natural areas to launch invasions. Comparing lists of species from urban alien plant surveys with those from naturalisation records for the region is a useful protocol for identifying species which may be moving along the introduction–naturalization–invasion continuum.

Journal ArticleDOI
Claude Lavoie1
TL;DR: There is some evidence that knotweed invasions have negative effects on the environment, but the research to date remains modest and a more extensive effort is needed to better define the environmental impacts of these plant invaders.
Abstract: I conducted an exhaustive literature review on Japanese knotweeds s.l. (including Reynoutria japonica, R. sachalinensis and R. ×bohemica), especially on the effects of these invasive plants on biodiversity and ecological processes or the chemical and physical characteristics of invaded habitats. A total of 44 studies have been published, the earliest in 2005, in peer-reviewed journals. Most studies were conducted in Europe, the others in the USA. Invasive knotweeds have major negative impacts on native plants, while the abundant litter produced and the deep rhizome system alter soil chemistry to the benefit of the invaders. However, the effects of knotweeds on other groups of species vary, with a combination of losers (soil bacteria, most arthropods and gastropods, some frogs and birds) and winners (most fungi, detritivorous arthropods, aquatic shredders, a few birds). This literature review highlights significant knowledge gaps of the effects of knotweeds on biodiversity (vertebrates) and ecological processes (ecohydrology). To what extent knotweed invasions have an impact on the population dynamics of native plants and animals on a regional to national scale remains to be verified. Although there is some evidence that knotweed invasions have negative effects on the environment, the research to date remains modest and a more extensive effort is needed to better define the environmental impacts of these plant invaders.

Journal ArticleDOI
TL;DR: The most important drivers of forest pathogen invasions appear to be (a) great adaptability to new environmental conditions; (b) efficient dispersal over long and short distances; (c) the ability to exchange genetic material or hybridize with resident or alien species.
Abstract: Invasive forest pathogens are a major threat to forests worldwide, causing increasing damage. The knowledge of both the specific traits underlying the capacity of a pathogen to become invasive, and the attributes predisposing an environment to invasion are to be thoroughly understood in order to deal with forest invasions. This paper summarizes the historical knowledge on this subject. Many aspects of the ecological processes underlying alien forest pathogens invasions are still unknown, which raises several scientific issues that need further study. The introduction of invasive forest pathogens to areas where naive hosts are found, is mainly due to global plant trade. Rapid transportation and reduced delivery times increase the chances of survival of pathogen propagules and of their successful establishment in new environments. In forest pathogens, the reproduction mode seems not to be a crucial determinant of invasiveness, as highly destructive pathogens have a variety of reproductive strategies. The most important drivers of forest pathogen invasions appear to be (a) great adaptability to new environmental conditions; (b) efficient dispersal over long and short distances, possibly assisted by the capacity to form novel associations with endemic and/or alien insect vectors; (c) the ability to exchange genetic material or hybridize with resident or alien species. Moreover, these features interact with some key traits of the invaded environment, e.g. environmental variability and biodiversity richness. Host resistance and natural enemies may occur as a result of rapid selection/adaptation after the epidemic phase of invasion.