scispace - formally typeset
Search or ask a question

Showing papers in "Chinese Journal of Mechanical Engineering in 2020"


Journal ArticleDOI
Geng Yang1, Honghao Lv1, Zhiyu Zhang1, Liu Yang1, Jia Deng1, Siqi You1, Juan Du1, Huayong Yang1 
TL;DR: A telerobotic system for remote care operation in isolation ward is developed and introduced here, mainly focused on the robotic design, motion capture, mapping algorithm development, telepresence software development, and control strategy design.
Abstract: © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. At the time of writing, the coronavirus disease (COVID19) has affected 212 countries and territories across the globe. According to the world health organization (WHO), a total number of 4,735,622 confirmed cases, including 316,289 deaths was reported [1]. In the fight against COVID-19, nurses, doctors, and other healthcare workers are in the front line of the battle bearing the higher risk of infection [2]. The International Council of Nurses (ICN) gathered further information to suggest that more than 90,000 healthcare workers have been infected worldwide [3]. Personal protective equipment (PPE) shortage is one of the key factors increasing the infection risk for the medical staffs. Therefore, finding alternative ways to lower the infection risk has become an urgent problem to be solved. Using robotic technology [4] and telemedicine [5] to help with the combat of COVID-19 outbreak has gained a great attention for good reasons: more robots and virtual meetings in the field means less person-to-person contact, thus, lower risk of infection for healthcare workers. Using robots can also reduce community transmission and PPE consumption. To win the battle, health and wellness of every healthcare worker has to be guaranteed [6]. From a requirements elicitation survey that was conducted at the early stage of the pandemic by interviewing the healthcare workers in the First Affiliated Hospital of Zhejiang University School of Medicine (FAHZU, the designated hospital for diagnosis and treatment of COVID-19 in Zhejiang Province, China), the following routines in the isolation ward are especially time-consuming or difficult while wearing PPE and are welcomed to be replaced using robotic devices: (1) Daily checkups on patient’s physical and mental conditions, (2) Delivery of medicine, food, or other essential items, (3) Operation of the medical instruments, (4) Extensive disinfection of the hightouch surfaces, (5) Auscultation while wearing PPE. Moreover, even with PPE, healthcare workers can still be infected in some special cases [7]. Therefore, a teleoperated device that can perform the basic routines in the isolation ward can not only reduce the risk of infection but also ensure healthcare workers have enough time for more important tasks. Based on the needs mentioned above, a telerobotic system for remote care operation in isolation ward is developed and introduced here. The research and development of this system are mainly focused on the robotic design, motion capture, mapping algorithm development, telepresence software development, and control strategy design. The proposed telerobotic system (Figure 1) has two main subsystems: the teleoperation system and the telepresence system:

84 citations


Journal ArticleDOI
TL;DR: This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis and concludes that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection, due to the complexity and uncertainty during indirect measurement.
Abstract: The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control, rather than using simplified physical models and human expertise. In the era of data-driven manufacturing, the explosion of data amount revolutionized how data is collected and analyzed. This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis. It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection, due to the complexity and uncertainty during indirect measurement. On the other hand, physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process. Machine learning, especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data, while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions. And these trends can demonstrated be by analyzing some typical applications of manufacturing process.

55 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the typical observing technologies deployed from the sea surface to the seafloor, and discussed the future trend of the ocean observation systems with the docking technology and sustained ocean energy.
Abstract: Covering about three quarters of the surface area of the earth, the ocean is a critical source of sustenance, medicine, and commerce. However, such vast expanse in both surface area and depth, presents myriad observing challenges for researchers, such as corrosion, attenuation of electromagnetic waves, and high pressure. Ocean observation technologies are progressing from the conventional single node, static and short-term modalities to multiple nodes, dynamic and long-term modalities, to increase the density of both temporal and spatial samplings. Although people’s knowledge of the oceans has been still quite limited, the contributions of many nations cooperating to develop the Global Ocean Observing System (GOOS) have remarkably promoted the development of ocean observing technologies. This paper reviews the typical observing technologies deployed from the sea surface to the seafloor, and discusses the future trend of the ocean observation systems with the docking technology and sustained ocean energy.

54 citations


Journal ArticleDOI
Bing Xu1, Jun Shen1, Shihao Liu1, Qi Su1, Junhui Zhang1 
TL;DR: In this article, the state of the art development for electro-hydraulic control valves and their related technologies is reviewed, and three aspects of state acquisition through sensors or indirect acquisition technologies, control strategies along with digital controllers and novel valves, and online maintenance through data interaction and fault diagnosis.
Abstract: Electro-hydraulic control valves are key hydraulic components for industrial applications and aerospace, which controls electro-hydraulic motion. With the development of automation, digital technology, and communication technology, electro-hydraulic control valves are becoming more digital, integrated, and intelligent in order to meet the requirements of Industry 4.0. This paper reviews the state of the art development for electro-hydraulic control valves and their related technologies. This review paper considers three aspects of state acquisition through sensors or indirect acquisition technologies, control strategies along with digital controllers and novel valves, and online maintenance through data interaction and fault diagnosis. The main features and development trends of electro-hydraulic control valves oriented to Industry 4.0 are discussed.

50 citations


Journal ArticleDOI
TL;DR: The main intention is to provide a comprehensive overview for the developments of Isogeometric Topology Optimization (ITO) in methods and applications.
Abstract: Topology Optimization (TO) is a powerful numerical technique to determine the optimal material layout in a design domain, which has accepted considerable developments in recent years. The classic Finite Element Method (FEM) is applied to compute the unknown structural responses in TO. However, several numerical deficiencies of the FEM significantly influence the effectiveness and efficiency of TO. In order to eliminate the negative influence of the FEM on TO, IsoGeometric Analysis (IGA) has become a promising alternative due to its unique feature that the Computer-Aided Design (CAD) model and Computer-Aided Engineering (CAE) model can be unified into a same mathematical model. In the paper, the main intention is to provide a comprehensive overview for the developments of Isogeometric Topology Optimization (ITO) in methods and applications. Finally, some prospects for the developments of ITO in the future are also presented.

45 citations


Journal ArticleDOI
Li Xiaofeng1, Shijing Wu1, Xiaoyong Li1, Hao Yuan1, Deng Zhao1 
TL;DR: A particle swarm optimization-support vector machine model is developed in which the optimal parameters c and δ for the support vector machine in each layer are determined by the particle swarm algorithm and yields better accuracy and efficiency than these other models.
Abstract: According to statistic data, machinery faults contribute to largest proportion of High-voltage circuit breaker failures, and traditional maintenance methods exist some disadvantages for that issue. Therefore, based on the wavelet packet decomposition approach and support vector machines, a new diagnosis model is proposed for such fault diagnoses in this study. The vibration eigenvalue extraction is analyzed through wavelet packet decomposition, and a four-layer support vector machine is constituted as a fault classifier. The Gaussian radial basis function is employed as the kernel function for the classifier. The penalty parameter c and kernel parameter δ of the support vector machine are vital for the diagnostic accuracy, and these parameters must be carefully predetermined. Thus, a particle swarm optimization-support vector machine model is developed in which the optimal parameters c and δ for the support vector machine in each layer are determined by the particle swarm algorithm. The validity of this fault diagnosis model is determined with a real dataset from the operation experiment. Moreover, comparative investigations of fault diagnosis experiments with a normal support vector machine and a particle swarm optimization back-propagation neural network are also implemented. The results indicate that the proposed fault diagnosis model yields better accuracy and efficiency than these other models.

41 citations


Journal ArticleDOI
TL;DR: This paper addresses key points that might yield breakthroughs for highly dynamic multilegged robots with the abilities of running (or jumping and hopping) and self-balancing and describes four dynamics-based control methods and two model-free control methods.
Abstract: Multilegged robots have the potential to serve as assistants for humans, replacing them in performing dangerous, dull, or unclean tasks. However, they are still far from being sufficiently versatile and robust for many applications. This paper addresses key points that might yield breakthroughs for highly dynamic multilegged robots with the abilities of running (or jumping and hopping) and self-balancing. First, 21 typical multilegged robots from the last five years are surveyed, and the most impressive performances of these robots are presented. Second, current developments regarding key technologies of highly dynamic multilegged robots are reviewed in detail. The latest leg mechanisms with serial-parallel hybrid topologies and rigid–flexible coupling configurations are analyzed. Then, the development trends of three typical actuators, namely hydraulic, quasi-direct drive, and serial elastic actuators, are discussed. After that, the sensors and modeling methods used for perception are surveyed. Furthermore, this paper pays special attention to the review of control approaches since control is a great challenge for highly dynamic multilegged robots. Four dynamics-based control methods and two model-free control methods are described in detail. Third, key open topics of future research concerning the mechanism, actuation, perception, and control of highly dynamic multilegged robots are proposed. This paper reviews the state of the art development for multilegged robots, and discusses the future trend of multilegged robots.

37 citations


Journal ArticleDOI
Xinxue Chai1, Ningbin Zhang1, He Leiying1, Qinchuan Li1, Wei Ye1 
TL;DR: A dimensional synthesis method for a redundantly actuated parallel robot for FSW based on sensitivity indices is proposed, where U denotes a universal joint, R denotes a revolute joint and P denotes a prismatic pair.
Abstract: Friction stir welding (FSW) has been widely applied in many fields as an alternative to traditional fusion welding. Although serial robots can provide the orientation capability required to weld along curved surfaces, they cannot adequately support the huge axial downward forces that FSW generates. Available parallel mechanism architectures, particularly redundantly actuated architectures for FSW, are still very limited. In this paper, a redundantly actuated 2UPR-2RPU parallel robot for FSW is proposed, where U denotes a universal joint, R denotes a revolute joint and P denotes a prismatic pair. First, its semi-symmetric structure is described. Next, inverse kinematics analysis involving an analytical representation of rotational axes is implemented. Velocity analysis is also conducted, which leads to the formation of a Jacobian matrix. Sensitivity performance is evaluated utilizing level set and convex optimization methods, where the local sensitivity indices are unit consistent, coordinate free, and of definite physical significance. Furthermore, global and hierarchical sensitivity indices are proposed for the design process. Finally, dimension synthesis is conducted based on the sensitivity indices and the optimal link parameters of the parallel robot are obtained. In summary, this paper proposes a dimensional synthesis method for a redundantly actuated parallel robot for FSW based on sensitivity indices.

37 citations


Journal ArticleDOI
TL;DR: The status of thermomechanical analysis of the friction stir welding (FSW) process is reviewed for establishing guidelines for further investigation, filling the available research gaps, and expanding FSW applications.
Abstract: This article reviews the status of thermomechanical analysis of the friction stir welding (FSW) process for establishing guidelines for further investigation, filling the available research gaps, and expanding FSW applications. Firstly, the advantages and applications of FSW process are introduced, and the significance and key issues for thermomechanical analysis in FSW are pointed out. Then, solid mechanic and fluid dynamic methods in modeling FSW process are described, and the key issues in modeling FSW are discussed. Different available mesh modeling techniques including the applications, benefits and shortcomings are explained. After that, at different subsections, the thermomechanical analysis in FSW of aluminum alloys and steels are examined and summarized in depth. Finally, the conclusions and summary are presented in order to investigate the lack of knowledge and the possibilities for future study of each method and each material.

34 citations


Journal ArticleDOI
Qinxue Pan1, Ruipeng Pan1, Chang Shao1, Meile Chang1, Xiaoyu Xu1 
TL;DR: In this review, the basic knowledge describing the state of stress and deformation of bolts, as well as conventional testing methods are summarized and analyzed and the new direction of research of the detection of residual axial stress in in-service bolts that have been assembled to yield is discussed.
Abstract: Bolts are important fasteners indispensable in the manufacturing field for their advantages, which include convenient assembly and disassembly, easy maintenance, refastenability to prevent looseness, and the avoidance of a phase change in the connected material composition. The precise control of the tightening force in bolts is closely related to the safety and reliability of the connected equipment or structure. Although there are many methods for estimating the tightening force applied to a bolt during assembly, poor accuracy in controlling the preload during the tightening process and a lack of monitoring to determine the residual axial force in service remain issues in evaluating the safety of bolted assemblies. As a nondestructive testing technology, ultrasonic measurement can be applied to successfully address these issues. In order to help researchers understand the theoretical basis and technological development in this field and to equip them to conduct further in-depth research, in this review, the basic knowledge describing the state of stress and deformation of bolts, as well as conventional testing methods are summarized and analyzed. Then, through a review of recent research of the ultrasonic measurement of the axial stress in bolts, the influence of the effective stressed length and temperature are analyzed and proposed methods of calibration and compensation are reviewed. In order to avoid coupling errors caused by traditional piezoelectric transducers, two newly proposed ultrasonic coupling technologies, the electromagnetic acoustic transducer (EMAT) and the permanent mounted transducer system (PMTS), are reviewed. Finally, the new direction of research of the detection of residual axial stress in in-service bolts that have been assembled to yield is discussed.

28 citations


Journal ArticleDOI
TL;DR: This study creates a novel intelligent manufacturing framework for the production recovery under the pandemic and builds an assessment model to evaluate the impacts of the IM technologies on industrial networks.
Abstract: Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufacturing system which incurs severe disruptions and complex issues to industrial networks. The intelligent manufacturing (IM) systems are promising to create a safe working environment by using the automated manufacturing assets which are monitored by the networked sensors and controlled by the intelligent decision-making algorithms. The relief of the production disruption by IM technologies facilitates the reconnection of the good and service flows in the network, which mitigates the severity of industrial chain disruption. In this study, we create a novel intelligent manufacturing framework for the production recovery under the pandemic and build an assessment model to evaluate the impacts of the IM technologies on industrial networks. Considering the constraints of the IM resources, we formulate an optimization model to schedule the allocation of IM resources according to the mutual market demands and the severity of the pandemic.

Journal ArticleDOI
TL;DR: Five state-of-the-art FOMs in terms of SOC estimation are compared and it is revealed that R(RQ), the simplest FOM, can overall provide satisfactory accuracy.
Abstract: State of charge (SOC) estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles. Battery fractional order models (FOMs) which come from frequency-domain modelling have provided a distinct insight into SOC estimation. In this article, we compare five state-of-the-art FOMs in terms of SOC estimation. To this end, firstly, characterisation tests on lithium ion batteries are conducted, and the experimental results are used to identify FOM parameters. Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy. The model R(RQ)W shows superior identification accuracy than the other four FOMs. Secondly, the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles, memory lengths, ambient temperatures, cells and voltage/current drifts. The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs. Although more complex models can have better robustness against temperature variation, R(RQ), the simplest FOM, can overall provide satisfactory accuracy. Validation results on different cells demonstrate the generalisation ability of FOMs, and R(RQ) outperforms other models. Moreover, R(RQ) shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.

Journal ArticleDOI
TL;DR: This paper presents a reconfigurable axis (rA) joint inspired and evolved from Rubik's Cubes, which have a unique feature of geometric and physical constraint of axes of joint.
Abstract: The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints. Compared with the method of changing the mobility by physical locking joints, the geometric constraint has good controllability, and the constructed parallel mechanism has more configurations and wider application range. This paper presents a reconfigurable axis (rA) joint inspired and evolved from Rubik's Cubes, which have a unique feature of geometric and physical constraint of axes of joint. The effectiveness of the rA joint in the construction of the limb is analyzed, resulting in a change in mobility and topology of the parallel mechanism. The rA joint makes the angle among the three axes inside the groove changed arbitrarily. This change in mobility is completed by the case illustrated by a 3(rA)P(rA) reconfigurable parallel mechanism having variable mobility from 1 to 6 and having various special configurations including pure translations, pure rotations. The underlying principle of the metamorphosis of this rA joint is shown by investigating the dependence of the corresponding screw system comprising of line vectors, leading to evolution of the rA joint from two types of spherical joints to three types of variable Hooke joints and one revolute joint. The reconfigurable parallel mechanism alters its topology by rotating or locking the axis of rA joint to turn all limbs into different phases. The prototype of reconfigurable parallel mechanism is manufactured and all configurations are enumerated to verify the validity of the theoretical method by physical experiments.

Journal ArticleDOI
TL;DR: All the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled and the instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.
Abstract: The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.

Journal ArticleDOI
TL;DR: The crucial role of bearings in rocket turbopumps and the related structural improvements of REBs are discussed, and the bearing candidates investigated by major space powers are summarized comprehensively.
Abstract: There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense. The pursuit of a long service life and reutilization highly depends on the bearing components. However, the rolling element bearings (REBs) used in the existing rocket turbopumps present obvious and increasing limitations due to their mechanical contacting mode. For REBs, high rotational speed and long service life are two performance indexes that mutually restrict each other. To go beyond the DN value (the product of the bearing bore and rotational speed) limit of REBs, the major space powers have conducted substantial explorations on the use of new types of bearings to replace the REB. This review discusses, first, the crucial role of bearings in rocket turbopumps and the related structural improvements of REBs. Then, with the prospect of application to the next generation of reusable liquid rocket turbopumps, the bearing candidates investigated by major space powers are summarized comprehensively. These promising alternatives to REBs include fluid-film, foil, and magnetic bearings, together with the novel superconducting compound bearings recently proposed by our team. Our more than ten years of relevant research on fluid-film and magnetic bearings are also introduced. This review is meaningful for the development of long-life and highly reliable bearings to be used in future reusable rocket turbopumps.

Journal ArticleDOI
TL;DR: In this paper, a review and analysis is conducted regarding the key techniques of various deep-sea sediment samplers, including sealing, pressure and temperature retaining, low-disturbance sampling, and no-pressure drop transfer.
Abstract: Deep-sea sediment is extremely important in marine scientific research, such as that concerning marine geology and microbial communities. The research findings are closely related to the in-situ information of the sediment. One prerequisite for investigations of deep-sea sediment is providing sampling techniques capable of preventing distortion during recovery. As the fruit of such sampling techniques, samplers designed for obtaining sediment have become indispensable equipment, owing to their low cost, light weight, compactness, easy operation, and high adaptability to sea conditions. This paper introduces the research and application of typical deep-sea sediment samplers. Then, a representative sampler recently developed in China is analyzed. On this basis, a review and analysis is conducted regarding the key techniques of various deep-sea sediment samplers, including sealing, pressure and temperature retaining, low-disturbance sampling, and no-pressure drop transfer. Then, the shortcomings in the key techniques for deep-sea sediment sampling are identified. Finally, prospects for the future development of key techniques for deep-sea sediment sampling are proposed, from the perspectives of structural diversification, functional integration, intelligent operation, and high-fidelity samples. This paper summarizes the existing samplers in the context of the key techniques mentioned above, and can provide reference for the optimized design of samplers and development of key sampling techniques.

Journal ArticleDOI
TL;DR: In this article, the effect of additive additive manufacturing on microstructural and mechanical properties of AlSi10Mg composite parts was investigated, and a near fully dense composite part (99.37%) with smooth surface morphology and elevated inter-layer bonding was successfully obtained.
Abstract: Selective laser melting (SLM) is an emerging additive manufacturing technology for fabricating aluminum alloys and aluminum matrix composites. Nevertheless, it remains unclear how to improve the properties of laser manufactured aluminum alloy by adding ceramic reinforcing particles. Here the effect of trace addition of TiB2 ceramic (1% weight fraction) on microstructural and mechanical properties of SLM-produced AlSi10Mg composite parts was investigated. The densification level increased with increasing laser power and decreasing scan speed. A near fully dense composite part (99.37%) with smooth surface morphology and elevated inter-layer bonding was successfully obtained. A decrease of lattice plane distance was identified by X-ray diffraction with the laser scan speed decreased, which implied that the crystal lattices were distorted due to the dissolution of Si and TiB2 particles. A homogeneous composite microstructure with the distribution of surface-smoothened TiB2 particles was present, and a small amount of Si particles precipitated at the interface between reinforcing particles and matrix. In contrast to the AlSi10Mg alloy, the composites showed a stabilized microhardness distribution. A higher ultimate tensile strength of 380.0 MPa, yield strength of 250.4 MPa and elongation of 3.43% were obtained even with a trace amount of ceramic addition. The improvement of tensile properties can be attributed to multiple mechanisms including solid solution strengthening, load-bearing strengthening and dispersion strengthening. This research provides a theoretical basis for ceramic reinforced aluminum matrix composites by additive manufacturing.

Journal ArticleDOI
TL;DR: A Jacobian based stiffness analysis is done to understand the variations in stiffness for different poses of the mobile platform and further, it is used to decide trajectories for the end effector within the singularity free region.
Abstract: Parallel Kinematic Machines (PKMs) are being widely used for precise applications to achieve complex motions and variable poses for the end effector tool. PKMs are found in medical, assembly and manufacturing industries where accuracy is necessary. It is often desired to have a compact and simple architecture for the robotic mechanism. In this paper, the kinematic and dynamic analysis of a novel 3-PRUS (P: prismatic joint, R: revolute joint, U: universal joint, S: spherical joint) parallel manipulator with a mobile platform having 6 Degree of Freedom (DoF) is explained. The kinematic equations for the proposed spatial parallel mechanism are formulated using the Modified Denavit-Hartenberg (DH) technique considering both active and passive joints. The kinematic equations are used to derive the Jacobian matrix of the mechanism to identify the singular points within the workspace. A Jacobian based stiffness analysis is done to understand the variations in stiffness for different poses of the mobile platform and further, it is used to decide trajectories for the end effector within the singularity free region. The analytical model of the robot dynamics is presented using the Euler-Lagrangian approach with Lagrangian multipliers to include the system constraints. The gravity and inertial forces of all links are considered in the mathematical model. The analytical results of the dynamic model are compared with ADAMS simulation results for a pre-defined trajectory of the end effector.

Journal ArticleDOI
TL;DR: In this article, the structural stress-fatigue life (S-N) curve of spot welding was fitted by the least-squares method, based on the quasi-Newton method.
Abstract: ∆F-N curves are usually used to predict the fatigue life of spot welding in engineering, but they are time-consuming and laborious and not universal. For the purpose of predicting the fatigue life of spot welding accurately and efficiently, tensile–shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations. These specimens were simulated by using the finite element method, and the structural stress was theoretically calculated. In the double logarithmic coordinate system, the structural stress–fatigue life (S–N) curve of spot welding was fitted by the least-squares method, based on the quasi-Newton method. The square of the correlation coefficient of the S-N curve was taken as the optimization objective, with the correction coefficients of force, bending moment, spot welding diameter, and sheet thickness as the variables. During the optimization process, three different ways were utilized to get three optimized spot welding S–N curves, which are suitable for different situations. The results show that the fitting effect of the S–N curve is improved, the data points are more compact, and the optimization effect is significant. These S–N curves can be used to predict the fatigue life, which provide the basis for practical engineering application.

Journal ArticleDOI
TL;DR: In this article, the authors summarized the recent significant process in the research of natural anti-solid particle erosion materials and their general design principles, according to these principles, several erosion-resistant structures are available.
Abstract: Solid particle erosion is a common phenomenon in engineering fields, such as manufacturing, energy, military and aviation. However, with the rising industrial requirements, the development of anti-solid particle erosion materials remains a great challenge. After billions of years of evolution, several natural materials exhibit unique and exceptional solid particle erosion resistance. These materials achieved the same excellent solid particle erosion resistance performance through diversified strategies. This resistance arises from their micro/nanoscale surface structure and interface material properties, which provide inspiration for novel multiple solutions to solid particle erosion. Here, this review first summarizes the recent significant process in the research of natural anti-solid particle erosion materials and their general design principles. According to these principles, several erosion-resistant structures are available. Combined with advanced micro/nanomanufacturing technologies, several artificial anti-solid particle erosion materials have been obtained. Then, the potential applications of anti-solid particle erosion materials are prospected. Finally, the remaining challenges and promising breakthroughs regarding anti-solid particle erosion materials are briefly discussed.

Journal ArticleDOI
TL;DR: The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction, which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.
Abstract: Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles. Nowadays, people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning, but the prediction accuracy still needs to be improved. The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy; problems, such as over fitting, occur in the process of improving prediction accuracy. The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction. By combining the two prediction algorithms, the fusion of prediction performance is achieved, the limit of the single prediction performance is crossed, and the goal of improving vehicle speed prediction performance is achieved. In this paper, an extraction method suitable for fixed route vehicle speed is designed. The application of Markov and back propagation (BP) neural network in predictions is introduced. Three new combined prediction methods, all named Markov and BP Neural Network (MBNN) combined prediction algorithm, are proposed, which make full use of the advantages of Markov and BP neural network algorithms. Finally, the comparison among the prediction methods has been carried out. The results show that the three MBNN models have improved by about 19%, 28%, and 29% compared with the Markov prediction model, which has better performance in the single prediction models. Overall, the MBNN combined prediction models can improve the prediction accuracy by 25.3% on average, which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.

Journal ArticleDOI
TL;DR: In this article, the effect of agitator types on the turbulent flows in stirred tanks without and with baffles was studied by solving the Navier-Stokes equations and RNG κ-e turbulent model.
Abstract: The aim of this paper is to study the effect of agitator’s types on the turbulent flows in stirred tanks without and with baffles. The hydrodynamics behavior induced by four different agitator’s types: a Rushton turbine (RT), a circular blade turbine (CBT), a diverging triangular blade turbine (DTBT) and converging triangular blade turbine (CTBT) are numerically predicted by solving the Navier-Stokes equations and RNG κ–e turbulent model. The simulations are carried out using the Multi Reference Frame (MRF) approach. The numerical results showed good agreement with experiment. We find that the agitator CTBT gives an important profit on the power consumption per report/ratio the others and DTBT give a good reduction of the vortex size of the impeller angles.

Journal ArticleDOI
TL;DR: In this article, the effects of surface treatment on the bonding mechanism and bonding properties of cold-rolled Cu/Al clad plates were investigated, and the results showed that different mechanical surface treatments have significant effects on the surface morphology, roughness, and residual stress.
Abstract: In the case of valuable cold-rolled Cu/Al clad plates, billet surface treatment before rolling is a significant process that can affect the bonding efficiency and quality. While the current studies primarily focus on the influence of rolling parameters, insufficient attention has been paid to surface treatment. In this study, the effects of mechanical surface treatment on the bonding mechanism and bonding properties of cold-rolled Cu/Al clad plates were investigated. The results showed that different mechanical surface treatments have significant effects on the surface morphology, roughness, and residual stress. In addition, the effect of surface mechanical treatment on bonding quality was also observed to be critical. When the grinding direction was consistent with the rolling direction (RD), the bonding quality of the Cu/Al clad plates was significantly improved. After surface treatment along the RD for 20 s, the Cu/Al clad plates showed the highest shear strength (78 MPa), approximately four times as high as that of the unpolished samples. Simultaneously, the peel strength of this process was also significantly higher than that achieved via the other processes. Finally, on the basis of the surface morphology, roughness, and residual stress, the effect of surface treatment on the bonding mechanism and bonding properties of Cu/Al clad plates was analyzed. This study proposes a deeper understanding of the bonding behavior and bonding mechanism for cold rolled clad plates processed via mechanical surface treatment.

Journal ArticleDOI
TL;DR: In walking trials, the soleus electromyography activity is reduced by as much as 72.2% when the proposed ankle-foot exoskeleton is worn on the human body, and the results show the potential use of theExoskeleton in humans’ daily life.
Abstract: Propulsion during push-off is the key to realizing human locomotion Humans have evolved a way of walking with high energy utilization, but it can be further improved Drawing inspiration from the muscle-tendon unit, a passive spring-actuated ankle-foot exoskeleton is designed to assist with human walking and to lengthen walking duration by mechanically enhancing walking efficiency Detection of the gait events is realized using a smart clutch, which is designed to detect the contact states between the shoe sole and the ground, and automatically switch its working state The engagement of a suspended spring behind the human calf muscles is hence controlled and is in synchrony with gait The device is completely passive and contains no external power source Energy is stored and returned passively using the clutch In our walking trials, the soleus electromyography activity is reduced by as much as 722% when the proposed ankle-foot exoskeleton is worn on the human body The influence of the exoskeleton on walking habits is also studied The results show the potential use of the exoskeleton in humans’ daily life

Journal ArticleDOI
TL;DR: In this article, the yield behavior of 7075 aluminum alloy in T6 temper (AA7075-T6) within the temperature ranging from 25°C to 230°C was investigated.
Abstract: Aluminum alloys have drawn considerable attention in the area of automotive lightweight. High strength aluminum alloys are usually deformed at elevated temperatures due to their poor formability at room temperature. In this work, the yield behavior of 7075 aluminum alloy in T6 temper (AA7075-T6) within the temperature ranging from 25 °C to 230 °C was investigated. Uniaxial and biaxial tensile tests with the aid of induction heating system were performed to determine the stress vs. strain curves and the yield loci of AA7075-T6 at elevated temperatures, respectively. Von Mises, Hill48 and Yld2000-2d yield criteria were applied to predicting yield loci which were compared with experimentally measured yield loci of the AA7075-T6. Results show that yield stress corresponding to the same equivalent plastic strain decreases with increasing temperature within the investigated temperature range and the shape of yield loci evolves nearly negligibly. The experimental yield locus expands with an increase of equivalent plastic strain at the same temperature and the work hardening rate of AA7075-T6 exhibits obvious stress-state-dependency. The non-quadratic Yld2000-2d yield criterion describes the yield surfaces of AA7075-T6 more accurately than the quadratic von Mises and Hill48 yield criteria, and an exponent of 14 in the Yld2000-2d yield function gives the optimal predictions for the AA7075-T6 at all investigated temperatures.

Journal ArticleDOI
TL;DR: The Tsinghua Advanced Mechanism and Robotized Equipment Laboratory and the Yantai Tsingke+ Robot Joint Research Institute Co., Ltd have jointly developed an automatic rapid temperature screening system that is particularly suitable for outdoor environments.
Abstract: © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The health of people around the world and the global economy are under substantial threat from the outbreak of pandemics [1]. Controlling pandemics is extremely challenging, with preventing the spread of pathogens the most important and critical step. Of all preventative actions, body temperature screening is undoubtedly highly necessary and effective [2]. During an infectious disease pandemic, automobile passengers and pedestrians should be manually screened at all types of entrances, including those to highways, airports, bus stations, hospitals, schools, conference venues, exhibition halls, office areas, hotels, and supermarket parking lots. Screening tasks are currently conducted by security guards or other staff via infrared (IR) thermometers. Currently, two types of thermometer are widely used for temperature measurement, i.e., contact and noncontact thermometers [3]. Contact-based measurements are usually time-consuming and increase the risk of cross infection between the humans being tested. In comparison, non-contact measurements have obvious advantages. Non-contact thermometers include IR screening instruments, IR forehead thermometers, and IR ear thermometers. Among them, forehead thermometers and screening instruments are most widely used, with typical accuracy levels of 0.5 °C and a maximum accuracy of 0.3 °C. In practice, the following problems are encountered when using forehead thermometers or screening instruments. 1) To achieve the expected accuracy, the ambient temperature is strictly limited (to approximately 20 °C) and a wind-free environment is usually required, i.e., the default service environment is generally indoors. 2) Indoor use raises the possibility of bringing pathogens indoors, which increases the risk of cross infection and hinders pandemic control. 3) When measuring facial temperature, facial coverings (cosmetics, dust, hair, etc.) easily lead to inaccurate results. To avoid these problems, the only reasonable approach is to measure body temperature outdoors on skin covered by clothes. As there is no available and reliable equipment for outdoor temperature measurement, forehead thermometers must be used outdoors. As a result, large deviations in temperature measurements are inevitable. In addition, temperature measurements by hand-held forehead thermometers are inefficient and highly labor intensive. Furthermore, the procedure might cause personal discomfort, and the possibility of cross infection still exists even outdoors. Therefore, a method for performing automatic rapid and accurate temperature measurements in an outdoor environment is urgently required. In this context, the Tsinghua Advanced Mechanism and Robotized Equipment Laboratory and the Yantai Tsingke+ Robot Joint Research Institute Co., Ltd. have jointly developed an automatic rapid temperature screening system that is particularly suitable for outdoor environments. The research and development of this system are mainly focused on the robotic design, temperature measurement model design, compensation algorithm development, visual semantic perception, and control strategy. Open Access Chinese Journal of Mechanical Engineering

Journal ArticleDOI
TL;DR: In this article, the main applications and key mechanical properties of Al-Li alloy extrusion profiles are summarized and analyzed, and the prospect for future development trends in these fields is given.
Abstract: Al–Li alloy is a new structural material with the advantages of lightweight and high strength. The extrusion profiles of Al–Li alloy are widely used in aerospace and other fields, which can significantly reduce the weight of the aerospace equipment and improve their carrying capacity and service performance. Particular service conditions of structural components in aeronautical and space areas put forward strict requirements on microstructure, mechanical properties, and dimensional precision of Al–Li alloy profiles. Therefore, it places higher requirements on the shape forming and microstructure controlling of the Al–Li alloy profiles. The manufacturing process of the profiles involves billet homogenization, hot extrusion, solution and quenching treatments, artificial aging, and others. The parameters of each process as well as the die structure have important effects on the final performance of the profiles. This article summarizes the main applications and key mechanical properties of Al–Li alloy extrusion profiles. The technologies related to the manufacturing process of the extrusion profiles are summarized and analyzed. The related studies about the evolutions of the microstructure and mechanical properties during homogenization and extrusion processes are reviewed. The developments of the solid solution and quenching treatments as well as the aging strengthening technology for extruded Al–Li alloy profiles are also introduced. The scientific problems and key technologies that need to be solved in the manufacturing of Al–Li alloy extrusion profiles are presented, and the prospect for future development trends in these fields is given.

Journal ArticleDOI
TL;DR: The hip prosthetic mechanism had a larger rotating workspace and better mechanical performance, which accorded a range of motion and bearing capacity similar to that of the human hip in multiple gait modes, and demonstrated the feasibility of the hip prosthetics mechanism and its good dynamic performance.
Abstract: To assist an amputee in regaining his or her daily quality of life, based on analysis of the motion characteristics of the human hip, a 2-UPR/URR parallel mechanism with a passive limb was designed. The inverse kinematics of this mechanism was analyzed based on a closed-loop vector method. The constrained Jacobian matrix and kinematic Jacobian matrix of each limb were then analyzed, and a 6 × 6 fully Jacobian matrix was constructed. Based on this, kinematic performances were analyzed and summarized. Finally, the dynamic model of the mechanism was constructed based on the virtual work principle, and its theoretical solution was compared with the numerical results, which were obtained in a simulation environment. Results showed that the prosthetic mechanism had a larger rotating workspace and better mechanical performance, which accorded a range of motion and bearing capacity similar to that of the human hip in multiple gait modes. Moreover, the validity of the dynamic model and inverse kinematics were verified by comparing the theoretical and simulation results. Furthermore, with flexion and extension, the torque change in the hip prosthetic mechanism was similar to that of the human hip, which demonstrated the feasibility of the hip prosthetic mechanism and its good dynamic performance.

Journal ArticleDOI
TL;DR: This study investigates the leakage, oil film thickness, and pocket pressure values of a slipper with circular dimples under different working conditions and reveals that flat slippers suffer less leakage than those with textured surfaces.
Abstract: Oil leakage between the slipper and swash plate of an axial piston pump has a significant effect on the efficiency of the pump. Therefore, it is extremely important that any leakage can be predicted. This study investigates the leakage, oil film thickness, and pocket pressure values of a slipper with circular dimples under different working conditions. The results reveal that flat slippers suffer less leakage than those with textured surfaces. Also, a deep learning-based framework is proposed for modeling the slipper behavior. This framework is a long short-term memory-based deep neural network, which has been extremely successful in predicting time series. The model is compared with four conventional machine learning methods. In addition, statistical analyses and comparisons confirm the superiority of the proposed model.

Journal ArticleDOI
Shen Nanyan1, Geng Liang1, Jing Li1, Fei Ye1, Yu Zhuang1, Wang Zirui1 
TL;DR: The modification method can greatly improve the stiffness model of the parallel mechanism and the proposed kinematics model and the improved stiffness model are utilized to enhance the machining accuracy of the PKM and optimize the working stiffness of parallel machine.
Abstract: Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy, stiffness and workspace of machining equipment. Therefore, a 5-DOF (degrees of freedom) parallel kinematic machine (PKM) with redundant constraints is proposed. Based on the kinematics analysis of the parallel mechanism using intermediate variables, the kinematics problems of the PKM are solved through equivalent kinematics model. The structural stiffness matrix method is adopted to model the stiffness of the parallel mechanism of the PKM, where the stiffness of each joint and branch component is obtained by stiffness formula and finite element analysis. And the stiffness model of the parallel mechanism is improved by correction coefficient matrix, each element of which is constructed as a polynomial function of three independent end variables of the parallel mechanism. The terminal stiffness matrices obtained by simulation result are used to determine the coefficients of polynomial function by least square fitting to describe the correction coefficient over the workspace of the parallel mechanism quantitatively. The experiment results prove that the modification method can greatly improve the stiffness model of the parallel mechanism. To enhance the machining accuracy of the PKM, the proposed kinematics model and the improved stiffness model are utilized to optimize the working stiffness of parallel machine by searching the best relative position of parallel machine and workpiece. A plate workpiece taken as example is examined in the case study section, which demonstrates the effectiveness of optimization method.