scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Research Letters in 2011"


Journal ArticleDOI
TL;DR: This article used repeat photography, long-term ecological monitoring and dendrochronology to document shrub expansion in arctic, high-latitude and alpine tundra.
Abstract: Recent research using repeat photography, long-term ecological monitoring and dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra

1,153 citations


Journal ArticleDOI
TL;DR: In this article, the authors propose that REDD and REDD+ should be grouped into three categories: conservation, reduced deforestation, and positive impacts on carbon stock changes in forests remaining forest, which includes reduced degradation, sustainable management of forest of various kinds, and forest enhancement.
Abstract: Different options have been suggested by Parties to the UNFCCC (United Framework Convention on Climate Change) for inclusion in national approaches to REDD and REDD+ (reduced deforestation, reduced degradation, enhancement of forest carbon stocks, sustainable management of forest, and conservation of forest carbon stocks). This paper proposes that from the practical and technical points of view of designing action for REDD and REDD+ at local and sub-national level, as well as from the point of view of the necessary MRV (monitoring, reporting and verification), these should be grouped into three categories: conservation ,w hich is rewarded on the basis of no changes in forest stock, reduced deforestation ,i n which lowered rates of forest area loss are rewarded, and positive impacts on carbon stock changes in forests remaining forest, which includes reduced degradation, sustainable management of forest of various kinds, and forest enhancement. Thus we have moved degradation, which conventionally is grouped with deforestation, into the forest management group reported as areas remaining forest land, with which it has, in reality, and particularly as regards MRV, much more in common. Secondly, in the context of the fact that REDD/REDD+ is to take the form of a national or near-national approach, we argue that while systematic national monitoring is important, it may not be necessary for REDD/REDD+ activities, or for national MRV, to be started at equal levels of intensity all over the country. Rather, areas where interventions seem easiest to start may be targeted, and here data measurements may be more rigorous (Tier 3), for example based on stakeholder self-monitoring with independent verification, while in other, untreated areas, a lower level of monitoring may be pursued, at least in the first instance. Treated areas may be targeted for any of the three groups of activities (conservation, reduced deforestation, and positive impact on carbon stock increases in forest remaining forest).

528 citations


Journal ArticleDOI
TL;DR: The authors analyzed five prominent time series of global temperature (over land and ocean) for their common time interval since 1979: three surface temperature records (from NASA/GISS, NOAA/NCDC and HadCRU) and two lower-troposphere (LT) temperature records based on satellite microwave sensors (from RSS and UAH).
Abstract: We analyze five prominent time series of global temperature (over land and ocean) for their common time interval since 1979: three surface temperature records (from NASA/GISS, NOAA/NCDC and HadCRU) and two lower-troposphere (LT) temperature records based on satellite microwave sensors (from RSS and UAH). All five series show consistent global warming trends ranging from 0.014 to 0.018 K yr 1 . When the data are adjusted to remove the estimated impact of known factors on short-term temperature variations (El Ni˜ no/southern oscillation, volcanic aerosols and solar variability), the global warming signal becomes even more evident as noise is reduced. Lower-troposphere temperature responds more strongly to El Ni˜ no/southern oscillation and to volcanic forcing than surface temperature data. The adjusted data show warming at very similar rates to the unadjusted data, with smaller probable errors, and the warming rate is steady over the whole time interval. In all adjusted series, the two hottest years are 2009 and 2010.

358 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the global P cycle to estimate planetary boundaries for freshwater eutrophication, and the boundary was computed for the input of P to freshwaters, the input from freshwaters to terrestrial soil and the mass of P in soil.
Abstract: Phosphorus (P) is a critical factor for food production, yet surface freshwaters and some coastal waters are highly sensitive to eutrophication by excess P. A planetary boundary, or upper tolerable limit, for P discharge to the oceans is thought to be ten times the pre-industrial rate, or more than three times the current rate. However this boundary does not take account of freshwater eutrophication. We analyzed the global P cycle to estimate planetary boundaries for freshwater eutrophication. Planetary boundaries were computed for the input of P to freshwaters, the input of P to terrestrial soil, and the mass of P in soil. Each boundary was computed for two water quality targets, 24 mg P m − 3, a typical target for lakes and reservoirs, and 160 mg m − 3, the approximate pre-industrial P concentration in the world's rivers. Planetary boundaries were also computed using three published estimates of current P flow to the sea. Current conditions exceed all planetary boundaries for P. Substantial differences between current conditions and planetary boundaries demonstrate the contrast between large amounts of P needed for food production and the high sensitivity of freshwaters to pollution by P runoff. At the same time, some regions of the world are P-deficient, and there are some indications that a global P shortage is possible in coming decades. More efficient recycling and retention of P within agricultural ecosystems could maintain or increase food production while reducing P pollution and improving water quality. Spatial heterogeneity in the global P cycle suggests that recycling of P in regions of excess and transfer of P to regions of deficiency could mitigate eutrophication, increase agricultural yield, and delay or avoid global P shortage.

332 citations


Journal ArticleDOI
TL;DR: In this article, the life cycle greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compared its emissions with national average US natural gas emissions produced in the year 2008.
Abstract: This study estimates the life cycle greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions with national average US natural gas emissions produced in the year 2008, prior to any significant Marcellus shale development. We estimate that the development and completion of a typical Marcellus shale well results in roughly 5500 t of carbon dioxide equivalent emissions or about 1.8 g CO2e/MJ of gas produced, assuming conservative estimates of the production lifetime of a typical well. This represents an 11% increase in GHG emissions relative to average domestic gas (excluding combustion) and a 3% increase relative to the life cycle emissions when combustion is included. The life cycle GHG emissions of Marcellus shale natural gas are estimated to be 63‐75 g CO2e/MJ of gas produced with an average of 68 g CO2e/MJ of gas produced. Marcellus shale natural gas GHG emissions are comparable to those of imported liquefied natural gas. Natural gas from the Marcellus shale has generally lower life cycle GHG emissions than coal for production of electricity in the absence of any effective carbon capture and storage processes, by 20‐50% depending upon plant efficiencies and natural gas emissions variability. There is significant uncertainty in our Marcellus shale GHG emission estimates due to eventual production volumes and variability in flaring, construction and transportation.

327 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia and analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in North American and northern Eurasia.
Abstract: To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen–deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

319 citations


Journal ArticleDOI
TL;DR: In this article, a spatial regression model was proposed to link the expansion of mechanized agriculture in settled agricultural areas to pasture conversions on distant, forest frontiers, and showed that a 10% reduction of soy in old pasture areas would have decreased deforestation by as much as 40% in heavily forested counties of Brazil.
Abstract: Expansion of global demand for soy products and biofuel poses threats to food security and the environment. One environmental impact that has raised serious concerns is loss of Amazonian forest through indirect land use change (ILUC), whereby mechanized agriculture encroaches on existing pastures, displacing them to the frontier. This phenomenon has been hypothesized by many researchers and projected on the basis of simulation for the Amazonian forests of Brazil. It has not yet been measured statistically, owing to conceptual difficulties in linking distal land cover drivers to the point of impact. The present article overcomes this impasse with a spatial regression model capable of linking the expansion of mechanized agriculture in settled agricultural areas to pasture conversions on distant, forest frontiers. In an application for a recent period (2003‐2008), the model demonstrates that ILUC is significant and of considerable magnitude. Specifically, a 10% reduction of soy in old pasture areas would have decreased deforestation by as much as 40% in heavily forested counties of the Brazilian Amazon. Evidently, the voluntary moratorium on primary forest conversions by Brazilian soy farmers has failed to stop the deforestation effects of expanding soy production. Thus, environmental policy in Brazil must pay attention to ILUC, which can complicate efforts to achieve its REDD targets.

301 citations


Journal ArticleDOI
TL;DR: In this paper, a spatial electricity cost model has been designed to point out whether diesel generators, photovoltaic systems or extension of the grid are the least-cost option in off-grid areas.
Abstract: Three rural electrification options are analysed showing the cost optimal conditions for a sustainable energy development applying renewable energy sources in Africa. A spatial electricity cost model has been designed to point out whether diesel generators, photovoltaic systems or extension of the grid are the least-cost option in off-grid areas. The resulting mapping application offers support to decide in which regions the communities could be electrified either within the grid or in an isolated mini-grid. Donor programs and National Rural Electrification Agencies (or equivalent governmental departments) could use this type of delineation for their program boundaries and then could use the local optimization tools adapted to the prevailing parameters.

275 citations


Journal ArticleDOI
TL;DR: In this paper, the authors extended the study period to 2010 and found that at the national scale the growing season (April-October) NDVI significantly increased by 0.0007/yr from 1982 to 2010, but the increasing trend in NDVI over the last decade decreased in comparison to that of the 1982-99 period.
Abstract: Using satellite-derived normalized difference vegetation index (NDVI) data, several previous studies have indicated that vegetation growth significantly increased in most areas of China during the period 1982-99. In this letter, we extended the study period to 2010. We found that at the national scale the growing season (April-October) NDVI significantly increased by 0.0007/yr from 1982 to 2010, but the increasing trend in NDVI over the last decade decreased in comparison to that of the 1982-99 period. The trends in NDVI show significant seasonal and spatial variances. The increasing trend in April and May (AM) NDVI (0.0013/yr is larger than those in June, July and August (JJA) (0.0003/yr) and September and October (SO) (0.0008/yr). This relatively small increasing trend of JJA NDVI during 1982-2010 compared with that during 1982-99 (0.0012/yr) (Piao et al 2003 J. Geophys. Res.-Atmos. 108 4401) implies a change in the JJA vegetation growth trend, which significantly turned from increasing (0.0039/yr) to slightly decreasing (0:0002/yr) in 1988. Regarding the spatial pattern of changes in NDVI, the growing season NDVI increased (over 0.0020/yr) from 1982 to 2010 in southern China, while its change was close to zero in northern China, as a result of a significant changing trend reversal that occurred in the 1990s and early 2000s. In northern China, the growing season NDVI significantly increased before the 1990s as a result of warming and enhanced precipitation, but decreased after the 1990s due to drought stress strengthened by warming and reduced precipitation. Our results also show that the responses of vegetation growth to climate change vary across different seasons and ecosystems.

272 citations


Journal ArticleDOI
TL;DR: This paper showed that due to the small temperature variability from one year to another, the earliest emergence of significant warming occurs in the summer season in low latitude countries (≈25°S−25°N) and that a local warming signal that exceeds past variability is emerging at present, or will likely emerge in the next two decades, in many tropical countries.
Abstract: The Earth is warming on average, and most of the global warming of the past half-century can very likely be attributed to human influence. But the climate in particular locations is much more variable, raising the question of where and when local changes could become perceptible enough to be obvious to people in the form of local warming that exceeds interannual variability; indeed only a few studies have addressed the significance of local signals relative to variability. It is well known that the largest total warming is expected to occur in high latitudes, but high latitudes are also subject to the largest variability, delaying the emergence of significant changes there. Here we show that due to the small temperature variability from one year to another, the earliest emergence of significant warming occurs in the summer season in low latitude countries (≈25°S–25°N). We also show that a local warming signal that exceeds past variability is emerging at present, or will likely emerge in the next two decades, in many tropical countries. Further, for most countries worldwide, a mean global warming of 1 °C is sufficient for a significant temperature change, which is less than the total warming projected for any economically plausible emission scenario. The most strongly affected countries emit small amounts of CO2 per capita and have therefore contributed little to the changes in climate that they are beginning to experience.

236 citations


Journal ArticleDOI
TL;DR: In this paper, an extensive monitoring program is being executed at the first offshore wind farm (Offshore Windfarm Egmond aan Zee, OWEZ), and the short-term results on a large number of faunal groups obtained so far.
Abstract: The number of offshore wind farms is increasing rapidly, leading to questions about the environmental impact of such farms. In the Netherlands, an extensive monitoring programme is being executed at the first offshore wind farm (Offshore Windfarm Egmond aan Zee, OWEZ). This letter compiles the short-term (two years) results on a large number of faunal groups obtained so far. Impacts were expected from the new hard substratum, the moving rotor blades, possible underwater noise and the exclusion of fisheries. The results indicate no short-term effects on the benthos in the sandy area between the generators, while the new hard substratum of the monopiles and the scouring protection led to the establishment of new species and new fauna communities. Bivalve recruitment was not impacted by the OWEZ wind farm. Species composition of recruits in OWEZ and the surrounding reference areas is correlated with mud content of the sediment and water depth irrespective the presence of OWEZ. Recruit abundances in OWEZ were correlated with mud content, most likely to be attributed not to the presence of the farm but to the absence of fisheries. The fish community was highly dynamic both in time and space. So far, only minor effects upon fish assemblages especially near the monopiles have been observed. Some fish species, such as cod, seem to find shelter inside the farm. More porpoise clicks were recorded inside the farm than in the reference areas outside the farm. Several bird species seem to avoid the park while others are indifferent or are even attracted. The effects of the wind farm on a highly variable ecosystem are described. Overall, the OWEZ wind farm acts as a new type of habitat with a higher biodiversity of benthic organisms, a possibly increased use of the area by the benthos, fish, marine mammals and some bird species and a decreased use by several other bird species.

Journal ArticleDOI
TL;DR: In this paper, changes in phenology over the past several decades across the northern high-latitude region (≥60°N) were examined by calibrating and analyzing time series of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer (AVHRR).
Abstract: Phenology of vegetation is a sensitive and valuable indicator of the dynamic responses of terrestrial ecosystems to climate change. Therefore, to better understand and predict ecosystems dynamics, it is important to reduce uncertainties in detecting phenological changes. Here, changes in phenology over the past several decades across the northern high-latitude region (≥60°N) were examined by calibrating and analyzing time series of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer (AVHRR). Over the past decade (2000–10), an expanded length of the growing season (LOS) was detected by MODIS, largely due to an earlier start of the growing season (SOS) by 4.7 days per decade and a delayed end of the growing season (EOS) by 1.6 days per decade over the northern high latitudes. There were significant differences between North America and Eurasia in phenology from 2000 to 2010 based on MODIS data (SOS: df = 21, F = 49.02, p < 0.0001; EOS: df = 21, F = 49.25, p < 0.0001; LOS: df = 21, F = 79.40, p < 0.0001). In northern America, SOS advanced by 11.5 days per decade, and EOS was delayed by 2.2 days per decade. In Eurasia, SOS advanced by 2.7 days per decade, and EOS was delayed by 3.5 days per decade. SOS has likely advanced due to the warming Arctic during April and May. Our results suggest that in recent decades the longer vegetation growing seasons can be attributed to more advanced SOS rather than delayed EOS. AVHRR detected longer LOS over the past three decades, largely related to delayed EOS rather than advanced SOS. These two datasets are significantly different in key phenological parameters (SOS: df = 17, F = 14.63, p = 0.0015; EOS: df = 17, F = 38.69, p < 0.0001; LOS: df = 17, F = 16.47, p = 0.0009) from 2000 to 2008 over the northern high latitudes. Thus, further inter-calibration between the sensors is needed to resolve the inconsistency and to better understand long-term trends of vegetation growth in the Arctic.

Journal ArticleDOI
TL;DR: In 2010, remote sensing data, surface observations and output from a regional atmosphere model point to new records in 2010 for surface melt and albedo, runoff, the number of days when bare ice is exposed and surface mass balance of the Greenland ice sheet, especially over its west and southwest regions as discussed by the authors.
Abstract: Analyses of remote sensing data, surface observations and output from a regional atmosphere model point to new records in 2010 for surface melt and albedo, runoff, the number of days when bare ice is exposed and surface mass balance of the Greenland ice sheet, especially over its west and southwest regions. Early melt onset in spring, triggered by above-normal near-surface air temperatures, contributed to accelerated snowpack metamorphism and premature bare ice exposure, rapidly reducing the surface albedo. Warm conditions persisted through summer, with the positive albedo feedback mechanism being a major contributor to large negative surface mass balance anomalies. Summer snowfall was below average. This helped to maintain low albedo through the 2010 melting season, which also lasted longer than usual.

Journal ArticleDOI
TL;DR: In this paper, the authors compare GlobCover and MODIS v.5 and show that the thematic accuracy in the cropland domain has decreased when comparing these two latest products.
Abstract: In the last 10 years a number of new global datasets have been created and new, more sophisticated algorithms have been designed to classify land cover. GlobCover and MODIS v.5 are the most recent global land cover products available, where GlobCover (300 m) has the finest spatial resolution of other comparable products such as MODIS v.5 (500 m) and GLC-2000 (1 km). This letter shows that the thematic accuracy in the cropland domain has decreased when comparing these two latest products. This disagreement is also evident spatially when examining maps of cropland and forest disagreement between GLC-2000, MODIS and GlobCover. The analysis highlights the continued uncertainty surrounding these products, with a combined forest and cropland disagreement of 893 Mha (GlobCover versus MODIS v.5). This letter suggests that data sharing efforts and the provision of more in situ data for training, calibration and validation are very important conditions for improving future global land cover products.

Journal ArticleDOI
TL;DR: In this article, the authors apply a modeling framework with detailed economic representation of the land and energy sector, and explore the cost-effective contribution of bioenergy to a low-carbon transition, paying special attention to implications for the land system.
Abstract: Biomass from cellulosic bioenergy crops is expected to play a substantial role in future energy systems, especially if climate policy aims at stabilizing greenhouse gas concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements and land availability for biomass plantations. This letter, by applying a modelling framework with detailed economic representation of the land and energy sector, explores the cost-effective contribution of bioenergy to a low-carbon transition, paying special attention to implications for the land system. In this modelling framework, bioenergy competes directly with other energy technology options on the basis of costs, including implicit costs due to biophysical constraints on land and water availability. As a result, we find that bioenergy from specialized grassy and woody bioenergy crops, such as Miscanthus or poplar, can contribute approximately 100 EJ in 2055 and up to 300 EJ of primary energy in 2095. Protecting natural forests decreases biomass availability for energy production in the medium, but not in the long run. Reducing the land available for agricultural use can partially be compensated for by means of higher rates of technological change in agriculture. In addition, our trade-off analysis indicates that forest protection combined with large-scale cultivation of dedicated bioenergy is likely to affect bioenergy potentials, but also to increase global food prices and increase water scarcity. Therefore, integrated policies for energy, land use and water management are needed.

Journal ArticleDOI
TL;DR: In this paper, the authors compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e., shale gas that has been produced using the process of hydraulic fracturing, or ‘fracking’), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector.
Abstract: New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or ‘fracking’), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately,p hot-voltaic arrays across the United States.
Abstract: Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately ,p hotovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m ! 2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11‐0.53 " C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 " Ca nd these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0. 5G t CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 " C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the

Journal ArticleDOI
TL;DR: In this paper, the hygroscopicity of fresh and photochemically aged soot and secondary organic aerosol (SOA) from diesel passenger car emissions was studied under atmospherically relevant conditions in a smog chamber at sub-and supersaturation of water vapor.
Abstract: Soot particles are an important component of atmospheric aerosol and their interaction with water is important for their climate effects. The hygroscopicity of fresh and photochemically aged soot and secondary organic aerosol (SOA) from diesel passenger car emissions was studied under atmospherically relevant conditions in a smog chamber at sub-and supersaturation of water vapor. Fresh soot particles show no significant hygroscopic growth nor cloud condensation nucleus (CCN) activity. Ageing by condensation of SOA formed by photooxidation of the volatile organic carbon (VOC) emission leads to increased water uptake and CCN activity as well as to a compaction of the initially non-spherical soot particles when exposed to high relative humidity (RH). It is important to consider the latter effect for the interpretation of mobility based measurements. The vehicle with oxidation catalyst (EURO3) emits much fewer VOCs than the vehicle without after-treatment (EURO2). Consequently, more SOA is formed for the latter, resulting in more pronounced effects on particle hygroscopicity and CCN activity. Nevertheless, the aged soot particles did not reach the hygroscopicity of pure SOA particles formed from diesel VOC emissions, which are similarly hygroscopic (0.06 < κH − TDMA < 0.12 and 0.09 < κCCN < 0.14) as SOA from other precursor gases investigated in previous studies.

Journal ArticleDOI
TL;DR: The authors used a hydrological model coupled with a lake/wetland algorithm to simulate the effects of lake bathymetry, human water use, and decadal climate variability on the lake's level, surface area, and water storage.
Abstract: Over the last 40 years, Lake Chad, once the sixth largest lake in the world, has decreased by more than 90% in area. In this study, we use a hydrological model coupled with a lake/wetland algorithm to simulate the effects of lake bathymetry, human water use, and decadal climate variability on the lake's level, surface area, and water storage. In addition to the effects of persistent droughts and increasing irrigation withdrawals on the shrinking, we find that the lake's unique bathymetry—which allows its division into two smaller lakes—has made it more vulnerable to water loss. Unfortunately the lake's split is favored by the 1952–2006 climatology. Failure of the lake to remerge with renewed rainfall in the 1990s following the drought years of the 1970s and 1980s is a consequence of irrigation withdrawals. Under current climate and water use, a full recovery of the lake is unlikely without an inter-basin water transfer. Breaching the barrier separating the north and south lakes would reduce the amount of supplemental water needed for recovery.

Journal ArticleDOI
TL;DR: In this article, the authors assessed the area deforested by industrial-scale high-yield oil palm expansion in the Peruvian Amazon from 2000 to 2010, finding that 72% of new plantations expanded into forested areas.
Abstract: High-yield agriculture potentially reduces pressure on forests by requiring less land to increase production. Using satellite and field data, we assessed the area deforested by industrial-scale high-yield oil palm expansion in the Peruvian Amazon from 2000 to 2010, finding that 72% of new plantations expanded into forested areas. In a focus area in the Ucayali region, we assessed deforestation for high- and smallholder low-yield oil palm plantations. Low-yield plantations accounted for most expansion overall (80%), but only 30% of their expansion involved forest conversion, contrasting with 75% for high-yield expansion. High-yield expansion minimized the total area required to achieve production but counter-intuitively at higher expense to forests than low-yield plantations. The results show that high-yield agriculture is an important but insufficient strategy to reduce pressure on forests. We suggest that high-yield agriculture can be effective in sparing forests only if coupled with incentives for agricultural expansion into already cleared lands.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the relationship between deciduous shrub fractional cover, normalized difference vegetation index (NDVI) and albedo using field data collected at a tundra site in NE Siberia.
Abstract: Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000–10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types

Journal ArticleDOI
TL;DR: The results of the first large-scale international survey of public perception of geoengineering and solar radiation management (SRM) are reported in this paper, where a sample of 3105 individuals in the United States, Canada and the United Kingdom was recruited by survey firms that administer internet surveys to nationally representative population samples.
Abstract: We report the results of the first large-scale international survey of public perception of geoengineering and solar radiation management (SRM). Our sample of 3105 individuals in the United States, Canada and the United Kingdom was recruited by survey firms that administer internet surveys to nationally representative population samples. Measured familiarity was higher than expected, with 8% and 45% of the population correctly defining the terms geoengineering and climate engineering respectively. There was strong support for allowing the study of SRM. Support decreased and uncertainty rose as subjects were asked about their support for using SRM immediately, or to stop a climate emergency. Support for SRM is associated with optimism about scientific research, a valuing of SRM’s benefits and a stronger belief that SRM is natural, while opposition is associated with an attitude that nature should not be manipulated in this way. The potential risks of SRM are important drivers of public perception with the most salient being damage to the ozone layer and unknown risks. SRM is a new technology and public opinions are just forming; thus all reported results are sensitive to changes in framing, future information on risks and benefits, and changes to context.

Journal ArticleDOI
TL;DR: Overall results indicate associations between ozone and various types of respiratory hospitalizations; however, study characteristics affected risk estimates, and adjustment for publication bias generally lowered overall estimates.
Abstract: Ozone is associated with health impacts including respiratory outcomes; however, results differ across studies. Meta-analysis is an increasingly important approach to synthesizing evidence across studies. We conducted meta-analysis of short-term ozone exposure and respiratory hospitalizations to evaluate variation across studies and explore some of the challenges in meta-analysis. We identified 136 estimates from 96 studies and investigated how estimates differed by age, ozone metric, season, lag, region, disease category, and hospitalization type. Overall results indicate associations between ozone and various types of respiratory hospitalizations; however, study characteristics affected risk estimates. Estimates were similar, but higher, for the elderly compared to all ages and for previous day exposure compared to same day exposure. Comparison across studies was hindered by variation in definitions of disease categories, as some (e.g., asthma) were identified through ≥3 different sets of ICD codes. Although not all analyses exhibited evidence of publication bias, adjustment for publication bias generally lowered overall estimates. Emergency hospitalizations for total respiratory disease increased 4.47% (95% interval 2.48, 6.50%) per 10ppb 24-hr ozone among the elderly without adjustment for publication bias and 2.97% (1.05, 4.94%) with adjustment. Comparison of multi-city study results and meta-analysis based on single-city studies further suggested publication bias.

Journal ArticleDOI
TL;DR: In this article, linear trends in the normalized difference vegetation index (NDVI) and tasseled cap indices are derived for four widely spaced national parks in northern Canada using stacks of 30?m resolution Landsat TM and ETM + satellite images.
Abstract: Analysis of coarse resolution (~1?km) satellite imagery has provided evidence of vegetation changes in arctic regions since the mid-1980s that may be attributable to climate warming. Here we investigate finer-scale changes to northern vegetation over the same period using stacks of 30?m resolution Landsat TM and ETM + satellite images. Linear trends in the normalized difference vegetation index (NDVI) and tasseled cap indices are derived for four widely spaced national parks in northern Canada. The trends are related to predicted changes in fractional shrub and other vegetation covers using regression tree classifiers trained with plot measurements and high resolution imagery. We find a consistent pattern of greening (6.1?25.5% of areas increasing) and predicted increases in vascular vegetation in all four parks that is associated with positive temperature trends. Coarse resolution (3?km) NDVI trends were not detected in two of the parks that had less intense greening. A range of independent studies and observations corroborate many of the major changes observed.

Journal ArticleDOI
TL;DR: In this paper, the authors provided a spatially explicit estimate of the impact of climate change on worldwide agricultural land availability, considering uncertainty in climate change projections and ambiguity with regard to land classification.
Abstract: Climate change can affect both crop yield and the land area suitable for agriculture. This study provides a spatially explicit estimate of the impact of climate change on worldwide agricultural land availability, considering uncertainty in climate change projections and ambiguity with regard to land classification. Uncertainty in general circulation model (GCM) projections is addressed using data assembled from thirteen GCMs and two representative emission scenarios (A1B and B1 employ CO2-equivalent greenhouse gas concentrations of 850 and 600 ppmv, respectively; B1 represents a greener economy). Erroneous data and the uncertain nature of land classifications based on multiple indices (i.e. soil properties, land slope, temperature, and humidity) are handled with fuzzy logic modeling. It is found that the total global arable land area is likely to decrease by 0.8–1.7% under scenario A1B and increase by 2.0–4.4% under scenario B1. Regions characterized by relatively high latitudes such as Russia, China and the US may expect an increase of total arable land by 37–67%, 22–36% and 4–17%, respectively, while tropical and sub-tropical regions may suffer different levels of lost arable land. For example, South America may lose 1–21% of its arable land area, Africa 1–18%, Europe 11–17%, and India 2–4%. When considering, in addition, land used for human settlements and natural conservation, the net potential arable land may decrease even further worldwide by the end of the 21st century under both scenarios due to population growth. Regionally, it is likely that both climate change and population growth will cause reductions in arable land in Africa, South America, India and Europe. However, in Russia, China and the US, significant arable land increases may still be possible. Although the magnitudes of the projected changes vary by scenario, the increasing or decreasing trends in arable land area are regionally consistent.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the change of snow state descriptions and estimates of major snow characteristics (snow cover duration, maximum winter snow depth, snow water equivalent) up to 2010 from 958 meteorological stations in Russia.
Abstract: Current snow state descriptions and estimates of major snow characteristics (snow cover duration, maximum winter snow depth, snow water equivalent) up to 2010 have been recorded from 958 meteorological stations in Russia. Apart from the description of long-term averages of snow characteristics, the estimates of their change that are averaged over quasi-homogeneous climatic regions are derived and regional differences in the change of snow characteristics are studied. In recent decades, the Russian territory has experienced an increase in snow depth, both winter average and maximum snow depths, against the background of global temperature rise and sea ice reduction in the northern hemisphere. The first generalized regional characteristics of maximum snow water equivalent in the winter season have been obtained. According to field observations, an increase in water supply has been revealed in the north of the East European Plain, in the western part by 4.5% (10 yr) − 1 and in the eastern part by 6% (10 yr) − 1. This characteristic also increases by ~ 6% (10 yr) − 1 in the southern forest zone of Western Siberia and in the Far East. Snow water equivalent in central Eastern Siberia increases by 3.4% (10 yr) − 1. From snow course observations in the forest, a tendency for a decrease in water supply (−6.4% (10 yr) − 1 is only found in the southwest of the East European Plain. Snow cover characteristics, being a product of several climate-forming factors that simultaneously affected them, change nonlinearly and different characteristics may and often do change differently with time. Therefore, one cannot assume that having information about the trend of one of the snow characteristics implies knowledge of the trend sign of others. In particular, whilst during the past four decades over the Russian Federation most snow cover characteristics—including the most important of them responsible for water supply—have increased, the only quantity that is reliably monitored from space (snow cover extent) has decreased, but in the last two decades this decrease has ceased. These tendencies are opposite to those observed in Canada and Alaska.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the recovery processes in a number of coastal areas managed for reducing nutrient inputs and thus, hypoxia (Northern Adriatic, Black Sea, Baltic Sea; Delaware Bay; and Danish Coastal Areas) reveals that recovery timescales following the return to normal oxygen conditions are much longer than those of loss following the onset of hypoxiosis, and typically involve decadal timesCales.
Abstract: Coastal hypoxia is increasing in the global coastal zone, where it is recognized as a major threat to biota. Managerial efforts to prevent hypoxia and achieve recovery of ecosystems already affected by hypoxia are largely based on nutrient reduction plans. However, these managerial efforts need to be informed by predictions on the thresholds of hypoxia (i.e. the oxygen levels required to conserve biodiversity) as well as the timescales for the recovery of ecosystems already affected by hypoxia. The thresholds for hypoxia in coastal ecosystems are higher than previously thought and are not static, but regulated by local and global processes, being particularly sensitive to warming. The examination of recovery processes in a number of coastal areas managed for reducing nutrient inputs and, thus, hypoxia (Northern Adriatic; Black Sea; Baltic Sea; Delaware Bay; and Danish Coastal Areas) reveals that recovery timescales following the return to normal oxygen conditions are much longer than those of loss following the onset of hypoxia, and typically involve decadal timescales. The extended lag time for ecosystem recovery from hypoxia results in non-linear pathways of recovery due to hysteresis and the shift in baselines, affecting the oxygen thresholds for hypoxia through time.

Journal ArticleDOI
TL;DR: In this paper, the authors explored to what extent socioeconomic disturbances can shift land use systems onto a different trajectory, and whether this can result in less intensive land use, and showed that the collapse of the Soviet Union in 1991 caused a major reorganization in land use system.
Abstract: Land use change is a principal force and inherent element of global environmental change, threatening biodiversity, natural ecosystems, and their services. However, our ability to anticipate future land use change is severely limited by a lack of understanding of how major socio-economic disturbances (e.g., wars, revolutions, policy changes, and economic crises) affect land use. Here we explored to what extent socio-economic disturbances can shift land use systems onto a different trajectory, and whether this can result in less intensive land use. Our results show that the collapse of the Soviet Union in 1991 caused a major reorganization in land use systems. The effects of this socio-economic disturbance were at least as drastic as those of the nuclear disaster in the Chernobyl region in 1986. While the magnitudes of land abandonment were similar in Ukraine and Belarus in the case of the nuclear disaster (28% and 36% of previously farmed land, respectively), the rates of land abandonment after the collapse of the Soviet Union in Ukraine were twice as high as those in Belarus. This highlights that national policies and institutions play an important role in mediating effects of socio-economic disturbances. The socio-economic disturbance that we studied caused major hardship for local populations, yet also presents opportunities for conservation, as natural ecosystems are recovering on large areas of former farmland. Our results illustrate the potential of socio-economic disturbances to revert land use intensification and the important role institutions and policies play in determining land use systems' resilience against such socio-economic disturbances.

Journal ArticleDOI
TL;DR: In a recent field manipulation experiment in which shrubs were removed from a plot and compared to a control plot with shrubs, Blok et al. as mentioned in this paper found that shrubs protect the ground through shading, resulting in a ~ 9% shallower active layer thickness (ALT) under shrubs compared to grassy-tundra, which led them to argue that continued Arctic shrub expansion could mitigate future permafrost thaw.
Abstract: Deciduous shrub abundance is increasing across the Arctic in response to climatic warming. In a recent field manipulation experiment in which shrubs were removed from a plot and compared to a control plot with shrubs, Blok et al (2010 Glob. Change Biol. 16 1296–305) found that shrubs protect the ground through shading, resulting in a ~ 9% shallower active layer thickness (ALT) under shrubs compared to grassy-tundra, which led them to argue that continued Arctic shrub expansion could mitigate future permafrost thaw. We utilize the Community Land Model (CLM4) coupled to the Community Atmosphere Model (CAM4) to evaluate this hypothesis. CLM4 simulates shallower ALT (~− 11 cm) under shrubs, consistent with the field manipulation study. However, in an idealized pan-Arctic + 20% shrub area experiment, atmospheric heating, driven mainly by surface albedo changes related to protrusion of shrub stems above the spring snowpack, leads to soil warming and deeper ALT (~+ 10 cm). Therefore, if climate feedbacks are considered, shrub expansion may actually increase rather than decrease permafrost vulnerability. When we account for blowing-snow redistribution from grassy-tundra to shrubs, shifts in snowpack distribution in low versus high shrub area simulations counter the climate warming impact, resulting in a grid cell mean ALT that is unchanged. These results reinforce the need to consider vegetation dynamics and blowing-snow processes in the permafrost thaw model projections.

Journal ArticleDOI
TL;DR: In this article, the effects of shrub vegetation on albedo across the terrestrial Arctic were examined using satellite observations and a pan-Arctic vegetation map, and the results illustrate that relatively small changes in vegetation properties result in differences in albedodynamics, regardless of the shrub growth, that may lead to differences in net radiation upwards of 50 Wm − 2 at weekly time scales.
Abstract: Recent field experiments in tundra ecosystems describe how increased shrub cover reduces winter albedo, and how subsequent changes in surface net radiation lead to altered rates of snowmelt. These findings imply that tundra vegetation change will alter regional energy budgets, but to date the effects have not been documented at regional or greater scales. Using satellite observations and a pan-Arctic vegetation map, we examined the effects of shrub vegetation on albedo across the terrestrial Arctic. We included vegetation classes dominated by low shrubs, dwarf shrubs, tussock-dominated graminoid tundra, and non-tussock graminoid tundra. Each class was further stratified by bioclimate subzones. Low-shrub tundra had higher normalized difference vegetation index values and earlier albedo decline in spring than dwarf-shrub tundra, but for tussock tundra, spring albedo declined earlier than for low-shrub tundra. Our results illustrate how relatively small changes in vegetation properties result in differences in albedo dynamics, regardless of shrub growth, that may lead to differences in net radiation upwards of 50 W m − 2 at weekly time scales. Further, our findings imply that changes to the terrestrial Arctic energy budget during this important seasonal transition are under way regardless of whether recent satellite observed productivity trends are the result of shrub expansion. We conclude that a better understanding of changes in vegetation productivity and distribution in Arctic tundra is essential for accurately quantifying and predicting carbon and energy fluxes and associated climate feedbacks.